分析 由直线l的方程可得直线过定点P(2,0),作出图形,求出P与线段两端点连线的斜率,则m值可求.
解答 解:由直线1:mx+y-2m=0,得m(x-2)+y=0,∴直线l过定点P(2,0),
若直线1:mx+y-2m=0与线段AB有交点,如图,
∵${k}_{PA}=\frac{2}{-1-2}=-\frac{2}{3},{k}_{PB}=\frac{3-0}{4-2}=\frac{3}{2}$,
∴-m$≤-\frac{2}{3}$或-m$≥\frac{3}{2}$,即m$≥\frac{2}{3}$或m$≤-\frac{3}{2}$.
故实数m的取值范围是(-∞,$-\frac{3}{2}$]∪[$\frac{2}{3},+∞$).
点评 本题考查直线的斜率,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
A. | {-$\sqrt{2}$-1,$\sqrt{2}$-1} | B. | {-$\sqrt{2}$+1,$\sqrt{2}$+1} | C. | [-2,0] | D. | (0,2]∪{1-$\sqrt{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3\sqrt{2}-\sqrt{3}}{6}$ | B. | $\frac{3\sqrt{2}+\sqrt{3}}{6}$ | C. | $\frac{-3\sqrt{2}+\sqrt{3}}{6}$ | D. | $\frac{-3\sqrt{2}-\sqrt{3}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com