精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|x2-3x<0,x∈Z},B={0,a},若A∩B≠∅,则实数a等于(  )
A.1B.2C.1或2D.1或2或3

分析 求出A中不等式的整数解确定出A,根据A与B的交集不为空集,求出a的值即可.

解答 解:由A中不等式解得:0<x<3,x∈Z,即A={1,2},
∵B={0,a},且A∩B≠∅,
∴a=1或2,
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处,已知接收天线的口径(直径)为4.8m,深度为0.5m.
(1)试建立适当的坐标系,求抛物线的标准方程和焦点坐标.
(2)为了增强卫星波束的接收,拟将接收天线的口径增大为5.2m,求此时星波束反射聚集点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数在(0,+∞)上是增函数的是(  )
A.y=9-x2B.y=|x-1|C.y=($\frac{1}{2}$)xD.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设数列{an}满足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$,则an=(  )
A.1-$\frac{1}{{2}^{n}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n}}$D.$\frac{n}{{2}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若锐角α,β满足(1+$\sqrt{3}$tanα)(1+$\sqrt{3}$tanβ)=4,则α+β=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个三角形的外接圆半径R=$\frac{a\sqrt{bc}}{b+c}$,则该三角形的最大内角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(cosx-$\sqrt{3}$sinx,2cos(x-$\frac{π}{6}$)),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的最小正周期;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\sqrt{3}$(sin2x-cos2x)+2sinxcosx的最小正周期为π,单调递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}中a1=2,a2=1,an+2=$\left\{\begin{array}{l}{\frac{2{a}_{n+1}}{{a}_{n}},{a}_{n+1}≥2}\\{\frac{4}{{a}_{n}},{a}_{n+1}<2}\end{array}\right.$(n∈N*),Sn是数列{an}的前n项和,则S2015=5239.

查看答案和解析>>

同步练习册答案