精英家教网 > 高中数学 > 题目详情
1.已知数列${a_n}=n•sin\frac{nπ}{2}$,则a1+a2+a3+…+a100=(  )
A.-48B.-50C.-52D.-49

分析 通过计算前几项可知a4n-3+a4n-2+a4n-3+a4n=-2,进而计算可得结论.

解答 解:∵${a_n}=n•sin\frac{nπ}{2}$,
∴a1=1,a2=0,a3=-3,a4=0,a5=5,a6=0,a7=-7,a8=0,…
∴a4n-3+a4n-2+a4n-1+a4n=-2,
∴a1+a2+a3+…+a100=-2×25=-50,
故选:B.

点评 本题考查数列的通项及前n项和,找出规律是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)定义域为A,值域为B.若B?A,则称f(x)在A上为“内向函数”,若A?B,则称f(x)在A上为“外向函数”.
(1)若f(x)=tanx,试判断f(x)在定义域上是“内向函数”还是“外向函数”;
(2)若$f(x)=lnx-\frac{a}{x}({a≤0})$在[1,e]上是“内向函数”,求a的范围;
(3)若B⊆A,则称f(x)在A上为“伪内向函数”.试证:f(x)=ax-lnx在[1,+∞)上是“伪内向函数”的充要条件是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知PA为⊙O的切线,A为切点,直线PO交⊙O于点E、F,过点A作PO的垂线交⊙O于点B,垂足为D.
证明:EF2=4OD•OP.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}是等差数列,a2和a2014是方程5x2-6x+1=0的两根,则数列{an}的前2015项的和为1209.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=f(x)是单调递增函数,其反函数是y=f-1(x).
(1)若y=x2-1(x>$\frac{1}{2}$),求y=f-1(x)并写出定义域M;
(2)对于(1)的y=f-1(x)和M,设任意x1∈M,x2∈M,x1≠x2,求证:|f-1(x1)-f-1(x2)|<|x1-x2|;
(3)求证:若y=f(x)和y=f-1(x)有交点,那么交点一定在y=x上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a,b∈R,且ab>0,则“a=b”是“$\frac{b}{a}+\frac{a}{b}≥2$等号成立”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=ax3+2bx2-4x在x=-2与$x=\frac{2}{3}$处取得极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].则图中x的值为0.01.

查看答案和解析>>

同步练习册答案