精英家教网 > 高中数学 > 题目详情
已知(a-i)2=-2i,其中i是虚数单位,则实数a=
 
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:由复数代数形式的乘除运算整理,然后由实部和实部相等,虚部等于虚部求得a值.
解答: 解:∵(a-i)2=-2i,
∴a2-2ai-1=-2i,
a2-1=0
-2a=-2
,解得:a=1.
故答案为:1.
点评:本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)判断函数f(x)=x3+
1
x3
的奇偶性;
(2)判断函数f(x)=
x
x2-1
在(-1,1)内的单调性并用单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

α∈(
π
2
,π)
,且sinαcosα=-
1
2
,则tan
α
2
的值是(  )
A、1+
2
B、
2
-1
C、1±
3
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a∥平面α,则下列命题是假命题的是(  )
A、a与α内的无数条直线平行
B、a与α内的所有直线都平行
C、a与α内的无数条直线垂直
D、a与α无公共点

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
2
1+i
在复平面内对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a、b满足a-b+4≥0,a+b-4≤0,b≥0,b≤ka,记a+2b的最大值为f(k),给出下列命题:
①若m≠n,使得f(m)=f(n),则mn<0;②?m>0,?n<0,使得f(m)=f(n);③?m<0,?n>0,使得f(m)=f(n).其中错误的命题有
 
(写出所有错误命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的参数方程是
x=2cosθ
y=2sinθ
(θ为参数),那么该圆的普通方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn=2an-3n.
(Ⅰ)求{an}的首项a1与递推关系式:an+1=f(an);
(Ⅱ)先阅读下面定理:“若数列{an}有递推关系an+1=Aan+B,其中A,B为常数,且A≠1,B≠0,则数列{an-
B
4-A
}是以A为公比的等比数列.”请你在(Ⅰ)的基础上应用本定理,求数列{an}的通项公式;
(Ⅲ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知:an=sin(2n-1)α,求Sn
(2)已知:a1=1,an+1=2an+n,求{an}.
(3)已知:a=x+y,b=y+z,ab=(x+y)(y+z)=1,求x+2y+z的最小值.

查看答案和解析>>

同步练习册答案