精英家教网 > 高中数学 > 题目详情

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:

商店名称

销售额/千万元

3

5

6

7

9

利润额/百万元

2

3

3

4

5

(1)画出销售额和利润额的散点图;

(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额对销售额的回归直线方程;

(3)据(2)的结果估计当销售额为4千万元时的利润额.

(附:线性回归方程:,)

【答案】(1)见解析. (2) (3)当销售额为4(千万元)时,利润约为(百万元).

【解析】

1)根据连锁经营公式所属5个零售店某月的销售额和利润资料散点图,由散点图可得连个变量符合正相关;

2)设回归直线的方程为,分别求出,由,求得的值,即可求解回归直线的方程;

3)当销售额为4(千万元)时,代入回归直线方程,即可作出预测,得到结论.

根据连锁经营公式所属5个零售店某月的销售额和利润资料散点图,

由散点图可得连个变量符合正相关;

2)设回归直线的方程为

因为

又由

所以利润对销售额的回归直线的方程为

3)当销售额为4千万元时,利润额为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(I)若,且对于,有恒成立,求的取值范围;

(II)若,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钓鱼岛事件以来,中日关系日趋紧张并不断升级.为了积极响应保钓行动,某学校举办了一场保钓知识大赛,共分两组.其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生.现从得满分的同学中,每组各任选1个同学,作为保钓行动代言人”.

(1)求选出的2个同学中恰有1个女生的概率;

(2)X为选出的2个同学中女生的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sinx的图象向右平移 个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如下表所示:

月份

1

2

3

4

5

6

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14.2

(1)根据1至5月份的数据,求出y关于x的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

参考公式:回归直线方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,若存在实数,使得对于任意的,都有,则称数列为“数列”( )

A. 是等差数列,且首项,则数列是“数列”

B. 是等差数列,且公差,则数列是“数列”

C. 是等比数列,也是“数列”,则数列的公比满足

D. 是等比数列,且公比满足,则数列是“数列”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】江苏省南京师大附中2018届高三高考考前模拟考试数学试题已知函数f(x)=lnx-ax+a,aR.

(1)若a=1,求函数f(x)的极值;

(2)若函数f(x)有两个零点,求a的范围;

(3)对于曲线y=f(x)上的两个不同的点P(x1,f(x1)),Q(x2,f(x2)),记直线PQ的斜率为k,若y=f(x)的导函数为f ′(x),证明:f ′()<k.

查看答案和解析>>

同步练习册答案