精英家教网 > 高中数学 > 题目详情
12.m=-1是直线mx+(2m-1)y+2=0与直线3x+my+3=0垂直的充分不必要条件.(填充分不必要条件,必要不充分条件,充要条件,既不充分条件,也不必要条件其中之一)

分析 根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断即可.

解答 解:若两直线垂直,则当m=0时,两直线为y=2与x=-1,此时两直线垂直.
当2m-1=0,即m=$\frac{1}{2}$时,两直线为x=-4与3x+$\frac{1}{2}$y+3=0,此时两直线相交不垂直.
当m≠0且m$≠\frac{1}{2}$时,两直线的斜截式方程为y=$\frac{-m}{2m-1}$x-$\frac{2}{2m-1}$与y=$-\frac{3}{m}x-\frac{3}{m}$.
两直线的斜率为$\frac{-m}{2m-1}$与$\frac{-3}{m}$,
所以由$\frac{-m}{2m-1}×\frac{-3}{m}=-1$得m=-1,
所以m=-1是两直线垂直的充分不必要条件,
故答案为:充分不必要

点评 本题考查充分条件必要条件的判断及两直线垂直的条件,解题的关键是理解充分条件与必要条件的定义及两直线垂直的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy内,直线l的参数方程是$\left\{\begin{array}{l}x=2-\frac{3}{5}t\\ y=\frac{4}{5}\end{array}\right.(t$为参数).以O为极点、x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴交于点M,点N在曲线C上,求M,N两点间距离|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)在定义域内可导,其图象如图所示,则导函数f′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知焦点在y轴上的双曲线C的一条渐近线与直线$l:x+\sqrt{3}y=0$垂直,且C的一个焦点到l的距离为3,则C的标准方程为(  )
A.$\frac{y^2}{9}-\frac{x^2}{3}=1$B.$\frac{x^2}{9}-\frac{y^2}{3}=1$C.$\frac{y^2}{4}-\frac{x^2}{6}=1$D.$\frac{x^2}{4}-\frac{y^2}{6}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当输入的x值为3时,如图的程序运行的结果等于(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示的一个几何体及其正视图如图,则其俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}满足a1=1,a3+a7=18.
(1)求数列{an}的通项公式;
(2)若cn=2n-1an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x>0,总有(x+1)ex>1,则¬p为(  )
A.?x0≤0,使得(x0+1)e${\;}^{{x}_{0}}$≤1B.?x0>0,使得(x0+1)e${\;}^{{x}_{0}}$≤1
C.?x0>0,使得(x0+1)e${\;}^{{x}_{0}}$≤1D.?x0≤0,使得(x0+1)e${\;}^{{x}_{0}}$≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(理)已知a2+c2-ac-3=0,则c+2a的最大值是(  )
A.2$\sqrt{3}$B.2$\sqrt{6}$C.2$\sqrt{7}$D.3$\sqrt{3}$

查看答案和解析>>

同步练习册答案