【题目】如图,在三棱台中,分别为的中点.
(Ⅰ)求证:平面;
(Ⅱ)若平面,,
,求平面与平面所成角(锐角)的大小.
【答案】(Ⅰ)略;(Ⅱ)
【解析】
试题(Ⅰ)思路一:连接,设,连接,先证明,从而由直线与平面平行的判定定理得平面;思路二:先证明平面平面,再由平面与平面平行的定义得到平面.
(Ⅱ)思路一:连接,设,连接,证明两两垂直, 以为坐标原点,建立如图所示的空间直角坐标系,利用空量向量的夹角公式求解;思路二:作于点,作于点,连接,证明即为所求的角,然后在三角形中求解.
试题解析:
(Ⅰ)证法一:连接,设,连接,
在三棱台中,
为的中点
可得
所以四边形为平行四边形
则为的中点
又为的中点
所以
又平面平面
所以平面.
证法二:
在三棱台中,
由为的中点
可得
所以四边形为平行四边形
可得
在中,为的中点,为的中点,
所以
又,所以平面平面
因为平面
所以平面
(Ⅱ)解法一:
设,则
在三棱台中,
为的中点
由,
可得四边形为平行四边形,
因此
又平面
所以平面
在中,由,是中点,
所以
因此两两垂直,
以为坐标原点,建立如图所示的空间直角坐标系
所以
可得
故
设是平面的一个法向量,则
由可得
可得平面的一个法向量
因为是平面的一个法向量,
所以
所以平面与平面所成的解(锐角)的大小为
解法二:
作于点,作于点,连接
由平面,得
又
所以平面
因此
所以即为所求的角
在中,
由∽
可得
从而
由平面平面
得
因此
所以
所以平面与平面所成角(锐角)的大小为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的普通方程为:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,正方形的顶点都在上,且逆时针依次排列,点的极坐标为
(1)写出曲线的参数方程,及点的直角坐标;
(2)设为椭圆上的任意一点,求:的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an},对任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常数).
(1)当k=0,b=3,p=﹣4时,求a1+a2+a3+…+an;
(2)当k=1,b=0,p=0时,若a3=3,a9=15,求数列{an}的通项公式;
(3)若数列{an}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当k=1,b=0,p=0时,设Sn是数列{an}的前n项和,a2﹣a1=2,试问:是否存在这样的“封闭数列”{an},使得对任意n∈N*,都有Sn≠0,且.若存在,求数列{an}的首项a1的所有取值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,.
(1)当时,求函数图象在处的切线方程;
(2)若对任意,不等式恒成立,求的取值范围;
(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:y=m(x﹣2)+2与圆C:x2+y2=9交于A,B两点,则使弦长|AB|为整数的直线l共有( )
A.6条B.7条C.8条D.9条
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=16cosθ.
(1)把曲线C2的极坐标方程化为直角坐标方程;
(2)求C1与C2交点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有边长均为1的正方形正五边形正六边形及半径为1的圆各一个,在水平桌面上无滑动滚动一周,它们的中心的运动轨迹长分别为,,,,则( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com