精英家教网 > 高中数学 > 题目详情
16.若θ为第四象限的角,且$sinθ=-\frac{1}{3}$,则cosθ=$\frac{2\sqrt{2}}{3}$;sin2θ=-$\frac{4\sqrt{2}}{9}$.

分析 由已知利用同角三角函数基本关系式可求cosθ,进而利用二倍角的正弦函数公式可求sin2θ的值.

解答 解:∵θ为第四象限的角,且$sinθ=-\frac{1}{3}$,
∴cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{2\sqrt{2}}{3}$,
sin2θ=2sinθcosθ=2×(-$\frac{1}{3}$)×$\frac{2\sqrt{2}}{3}$=-$\frac{4\sqrt{2}}{9}$.
故答案为:$\frac{2\sqrt{2}}{3}$,-$\frac{4\sqrt{2}}{9}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,2QA=2AB=PD
(Ⅰ)证明:PQ⊥QC
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.近年来我国电子商务行业发展迅速,相关管理部门推出了针对电商的商品质量和服务评价的评价体系,现从评价系统中选出某商家的200次成功交易,发现对商品质量的好评率为0.6,对服务评价的好评率为0.75,其中对商品质量和服务评价都做出好评的交易80次.
(1)是否可以在犯错误概率不超过0.5%的前提下,认为商品质量与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品质量和服务评价全好评的次数为随机变量X,求X的分布列(可用组合数公式表示)和数学期望.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项都不相等的数列{an}满足n≥2,$a_n^2+a_{n-1}^2-2{a_n}{a_{n-1}}-{a_n}+{a_{n-1}}=0$,a1=3.
(1)求数列的通项公式an
(2)若${b_n}=\frac{1}{{n{a_n}}}$,求数列{bn}的前n项和Sn
(3)证明:${S_n}≥\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sinx-cosx的图象(  )
A.关于直线$x=\frac{π}{4}$对称B.关于直线$x=-\frac{π}{4}$对称
C.关于直线$x=\frac{π}{2}$对称D.关于直线$x=-\frac{π}{2}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$.
(Ⅰ)求tan2φ的值;
(Ⅱ)求$\frac{sinφ+cosφ}{2cosφ-sinφ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=x2-2x+3
(Ⅰ)若函数$y=f({log_3}x+m),x∈[\frac{1}{3},3]$的最小值为3,求实数m的值;
(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R).  
(1)若函数f(x)为奇函数,求实数a的值;
(2)若函数f(x)在区间[-1,1]上是增函数,求实数a的值组成的集合A;
(3)设关于x的方程f(x)=$\frac{1}{x}$的两个非零实根为x1,x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案