精英家教网 > 高中数学 > 题目详情
5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求B1E与平面AEC所成角的正弦值.

分析 (1)根据线面平行的判断定理即可证明EF∥平面ABC1D1,(2)根据直线和平面所成角的定义即可求直线B1E与平面AEC所成角的正弦值.

解答 (1)证明:如图示:
在正方体ABCD-A1B1C1D1中,
连接AD1,BD1,BC1,则ABC1D1为平行四边形,
∵E,F分别为DD1、DB的中点,
∴EF∥BD1
∵BD1?平面ABC1D1,EF?平面ABC1D1
∴EF∥平面ABC1D1
(2)解:由题意得:AE=EC,且F是中点,
∴EF⊥AC,∴∠B1EF是直线B1E与平面AEC所成角,
∵B1E=$\sqrt{{{{D}_{1}B}_{1}}^{2}{{+D}_{1}E}^{2}}$=3,B1F=$\sqrt{{FB}^{2}{+{BB}_{1}}^{2}}$=$\sqrt{6}$,
EF=$\sqrt{{DE}^{2}{+DF}^{2}}$=$\sqrt{3}$,
∴${{EB}_{1}}^{2}$=EF2+${{FB}_{1}}^{2}$,
∴sin∠B1EF=$\frac{\sqrt{6}}{3}$.

点评 本题主要考查空间直线和平面平行的判断以及直线和平面所成角的求解,要求熟练掌握相应的判断定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知双曲线S与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{34}$=1的焦点相同,如果y=$\frac{3}{4}$x是双曲线S的一条渐近线,那么双曲线S的方程为$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x,x1,x2是任意实数,且x1≠x2,证明$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}{+x}_{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,平行四边形ABCD中,AB=2,BC=$\sqrt{2}$,∠BAD=45°,O为CD中点,将△BOC沿OB边翻折,折成直二面角A-BO-C,E为AC中点,
(Ⅰ)求证:DE∥平面BOC;
(Ⅱ)求直线AC与平面BCD所成夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四棱锥P-ABCD中,PD⊥底面ABCD,四边形ABCD为正方形,且PD=AB=1,$\overrightarrow{BG}$=$\frac{1}{3}$$\overrightarrow{BD}$,则$\overrightarrow{PG}$与底面ABCD的夹角的正弦值为(  )
A.$\frac{2\sqrt{34}}{17}$B.$\frac{3\sqrt{17}}{17}$C.-$\frac{2\sqrt{34}}{17}$D.-$\frac{3\sqrt{17}}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正四棱锥P-ABCD的高为$\sqrt{3}$,侧棱长为$\sqrt{7}$,则它的斜高为(  )
A.2B.4C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x$.
(1)求f(x)的最小正周期;
(2)若f(x)=-1,求$cos(\frac{2π}{3}-2x)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.
(Ⅰ)求证:BE2=CE•PE
(Ⅱ)若EC=2$\sqrt{5}$,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0),离心率为$\frac{{\sqrt{2}}}{2}$,且过点A(-1,0).
(Ⅰ)求椭圆E的方程.
(Ⅱ)若椭圆E的任意两条互相垂直的切线相交于点P,证明:点P在一个定圆上.

查看答案和解析>>

同步练习册答案