分析 设出直线方程代入抛物线方程整理可得k2x2+(-4k2+2k-4)x+4k2-4k+1=0(*)
(1)直线与抛物线只有一个公共点?(*)只有一个根
(2)直线与抛物线有2个公共点?(*)有两个根
(3)直线与抛物线没有一个公共点?(*)没有根
解答 解:由题意可设直线方程为:y=k(x-2)+1,
代入抛物线方程整理可得k2x2+(-4k2+2k-4)x+4k2-4k+1=0(*)
(1)直线与抛物线只有一个公共点等价于(*)只有一个根
①k=0时,y=1符合题意;
②k≠0时,△=(-4k2+2k-4)2-4k2(4k2-4k+1)=0,整理,得2k2-k+1=0,无解,
综上可得,k=0;
(2)由(1)得2k2-k+1>0且k≠0,∴k≠0;
(3)由(1)得2k2-k+1<0,无解.
点评 本题主要考查了由直线与抛物线的位置关系的求解参数的取值范围,一般的思路是把位置关系转化为方程解的问题,体现了转化的思想.
科目:高中数学 来源: 题型:选择题
A. | {1,3,a} | B. | {1,2,3,a} | C. | {1,2,3} | D. | {1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{-\frac{π}{6},\frac{5π}{6}}]$ | B. | $[{-\frac{π}{2},\frac{π}{2}}]$ | C. | $[{-\frac{π}{12},\frac{4π}{3}}]$ | D. | $[{-\frac{π}{4},0}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com