精英家教网 > 高中数学 > 题目详情

【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.

【答案】(1)265公斤 (2)0.7

【解析】

1)用频率分布直方图的每一个矩形的面积乘以矩形的中点坐标求和即为平均值;

(2)讨论日需求量与250公斤的关系,写出分段函数再利用频率分布直方图求概率即可.

(1)

故该种蔬果日需求量的平均数为265公斤.

(2)当日需求量不低于250公斤时,利润元,

当日需求量低于250公斤时,利润

所以

得,,

所以

故估计利润不小于1750元的概率为0.7 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自出生之日起,人的情绪、体力、智力等心理、生理状况就呈周期变化,变化由线为.根据心理学家的统计,人体节律分为体力节律、情绪节律和智力节律三种.这些节律的时间周期分别为23天、28天、33.每个节律周期又分为高潮期、临界日和低潮期三个阶段.以上三个节律周期的半数为临界日,这就是说11.5天、14天、16.5天分别为体力节律、情绪节律和智力节律的临界日.临界日的前半期为高潮期,后半期为低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天计算).

1)请写出小英的体力、情绪和智力节律曲线的函数;

2)试判断小英在2019422日三种节律各处于什么阶段,当日小英是否适合参加某项体育竞技比赛?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形的中线与中位线相交于,已知旋转过程中的一个图形,下列命题中,错误的是

A. 恒有

B. 异面直线不可能垂直

C. 恒有平面⊥平面

D. 动点在平面上的射影在线段

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在区间[1,2]上的最大值;

(2)设在(0,2)内恰有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人射击,已知甲每次击中目标的概率为,乙每次击中目标的概率为

1)两人各射击一次,求至少有一人击中目标的概率;

2)若制定规则如下:两人轮流射击,每人至多射击2次,甲先射,若有人击中目标即停止射击.

①求乙射击次数不超过1次的概率;

②记甲、乙两人射击次数和为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若,求的单调区间;

(2)当时,记的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个正多边形的每条边和对角线恰各染成2018种颜色之一,且所有边及对角线不全同色.若正多边形中不存在两色三角形(即三角形的三边恰被染成两种颜色),则称该多边形的染色是“和谐的”.求最大的正整数 ,使得存在一个和谐的染色正边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的底面与圆锥的底面都在平面上,且过点,又的直径,垂足为.设三棱锥的所有棱长都是1,圆锥的底面直径与母线长也都是1,圆锥的底面直径与母线长也都是1.求圆锥的顶点到三棱锥的三个侧面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C的对边分别为a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大小;

(Ⅱ)若,求的值.

查看答案和解析>>

同步练习册答案