精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log
1
2
2x-2,求函数定义域.
考点:函数的定义域及其求法
专题:计算题,函数的性质及应用
分析:由题意可得,2x>0,从而求函数的定义域.
解答: 解:由题意可得,2x>0,
则x>0,
即函数f(x)=log
1
2
2x-2的定义域为(0,+∞).
点评:本题考查了函数的定义域的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(α+70°)=
3
5
,且α是第四象限角,则cos(40°-2α)+sin(α+25°)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=(  )
A、13
B、2
C、
2
13
D、
13
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x-2sin2x
(1)求函数f(x)的最小正周期.
(2)求函数单调递增区间.
(3)求函数f(x)的最大值及f(x)取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列;
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)•…•(2an+1),求数列{an}的通项及Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在R上是奇函数,且在(-1,0)上单调递增,且f(x+2)=-f(x).
(1)证明:f(x)的图象关于点(2k,0)中心对称,以及关于直线x=2k+1对称;
(2)讨论f(x)在区间(1,2)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=2且an+an-1=2n+2n-1,Sn为数列{an}前n项和,则log2(S2012+2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2x
,各项均为正数的数列{an}满足a1=1,an+2=f(an),若a2010=a2012,则a20+a11的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:
x=a+4t
y=-1-2t
(t为参数),圆C:ρ=2
2
cos(θ+
π
4
)
(极轴与x轴的非负半轴重合,且单位长度相同).
(1)求圆心C到直线l的距离;
(2)若直线l被圆C解得的弦长为
6
5
6
,求实数a的值.

查看答案和解析>>

同步练习册答案