精英家教网 > 高中数学 > 题目详情
16.已知a=ln$\frac{1}{2}$,b=e${\;}^{\frac{1}{2}}$,c=2-e(e≈2.71828…),则a,b,c的大小关系为(  )
A.b<a<cB.a<b<cC.a<c<bD.c<a<b

分析 比较三个数与“1”,“0”的大小,即可推出结果.

解答 解:a=ln$\frac{1}{2}$<0,b=e${\;}^{\frac{1}{2}}$>1,c=2-e∈(0,1),
可得a<c<b.
故选:C.

点评 本题考查对数值的大小比较,掌握对数的基本性质的解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如果函数y=logax在区间[2,+∞)上恒有y>1,那么实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,a1=1,an+2+ancosnπ=1,记Sn是数列{an}的前n项和,则$\frac{{S}_{120}}{{a}_{61}}$等于(  )
A.930B.1520C.60D.61

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设偶函数f(x)满足f(x)=2x-4(x≥0),若f(x-2)>0,则x的取值范围是(  )
A.(-∞,0)B.(0,4)C.(4,+∞)D.(-∞,0)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)的定义域为R,并满足以下条件:
①对任意的x∈R,有f(x)>0;
②对任意的x,y∈R,都有f(xy)=[f(x)]y
③$f(\frac{1}{3})>1$.
(Ⅰ)求f(0)的值;
(Ⅱ)判断并证明函数f(x)在R上的单调性;
(Ⅲ)解关于x的不等式:[f(x-1)](x+1)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义在R上的函数f(x)对任意实数x,y,恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-$\frac{2}{3}$.
(1)求证:f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(3)求不等式f(2x)+f(x2-2)<-4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足x•y>0,且x+y=-1,则$\frac{1}{x}+\frac{4}{y}$的最大值为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知斜三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱长为5,点D,E,F分别是BB1,AA1,CC1,的中点,若侧棱AA1与底面三角形的相邻两边都成60°角,则四棱锥D-A1C1EF的体积是(  )
A.$\frac{{20\sqrt{2}}}{3}$B.$\frac{{20\sqrt{3}}}{3}$C.$\frac{{50\sqrt{2}}}{9}$D.$\frac{{50\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:
(1)2x-10<0;
(2)求5$\sqrt{5}$3$\sqrt{{5}^{2}}$的值;
(3)lg20-lg2.

查看答案和解析>>

同步练习册答案