精英家教网 > 高中数学 > 题目详情
证明函数f(x)=x+
1
x
在(-1,0)上是减少的.
考点:函数单调性的判断与证明
专题:计算题,函数的性质及应用
分析:先在定义域上取值,再作差、变形,变形彻底后根据式子的特点,讨论判断符号、下结论.
解答: 证明:设-1<x1<x2<0,则有f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2

=(x1-x2)+(
1
x1
-
1
x2
)=(x1-x2)•
x1x2-1
x1x2

由于-1<x1<x2<0,0<x1x2<1,x1x2-1<0,又x1x2>0,x1-x2<0,
则f(x1)-f(x2)>0,即f(x1)>f(x2),
所以函数在(-1,0)上为减函数.
点评:本题考查了函数单调性的证明方法:定义法,本题关键是作差变形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex(ax2+x+1),且a>0,求函数f(x)的单调区间及其极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={1,2,4,5},a,b∈A则方程
x2
a2
+
y2
b2
=1表示焦点在y轴上的椭圆的概率为(  )
A、
3
4
B、
3
8
C、
3
16
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某建筑的金属支架如图所示,根据要求AB至少长2.8米,C为AB的中点,B到D的距离比CD的长小0.5m,∠BCD=60°,已知建筑支架的材料每米的价格为每米100元.
(1)设BC=x米,CD=y米,试用x表示y;
(2)问怎样设计AB,CD的长,可使建造这个支架的成本最低,并求最低成本是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx+ax2-1(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设a=1,若不等式f(1+x)+f(1-x)-m<0对任意的0<x<1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an},{bn}的前n项和分别为Sn,Tn若对任意自然数n都有
Sn
Tn
=
2n-3
4n-3
,则
a9
b5+b7
+
a3
b8+b4
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

国庆期间襄阳某体育用品专卖店抓住商机大量购进某特许商品进行销售,该特许产品的成本为20元/个,每日的销售量y(单位:个)与单价x(单位:元)之间满足关系式y=
a
x-20
+4(x-50)2
,(其中20<x<50,a为常数).当销售价格为40元/个时,每日可售出该商品401个.
(1)求a的值及每日销售该特许产品所获取的总利润L(x);
(2)试确定单价x的值,使所获得的总利润L(x)最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把由半椭圆
x2
a2
+
y2
b2
=1(x≥1)与半椭圆
y2
b2
+
x2
c2
=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0、F1、F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角形,则ab的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D为BC的中点,若AB=
5
,AC=3,则
BC
AD
=(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案