精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+alnxx
,(a∈R).
(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)在(1)条件下,若直线y=kx与函数y=f(x)的图象相切,求实数k的值.
分析:(1)根据极值的定义可得f′(1)=0求出a的值然后再回代到题中利用极值的定义判断函数f(x)是否在x=1处取得极值以免产生增根.
(2)设切点A(x0,y0)根据直线y=kx与函数y=f(x)的图象相切和导数的几何意义可得k=f′(x0)再根据k=kOA建立关于x0的等式然后求出x0(要注意其大于0)进而求出k
解答:解:(1)∵f(x)=
1+alnx
x

∴f′(x)=
a-1-alnx
x2

∵函数f(x)在x=1处取得极值
∴f′(1)=a-1=0
∴a=1
经检验,a=1时f′(x)=-
lnx
x2
故0<x<1时f′(x)>0,x>1时f′(x)<0,所以函数f(x)在(0,1)单调递增,在(1,+∞)单调递减故f(x)在x=1处取得极值.
∴a=1
(2)由(1)可知a=1
∴f(x)=
1+lnx
x

∴f′(x)=-
lnx
x2

设切点A(x0,y0
∴k=f′(x0)=-
Inx0
x
2
0

又∵k=kOA=
1+lnx0
x02

1+Inx0
x
2
0
=-
Inx0
x
2
0

∴lnx0=-
1
2

x0e-
1
2

∴k=kOA=
1+lnx0
x02
=
1-
1
2
(e-
1
2
)
2
=
e
2
点评:本题主要考查了函数极值的概念已及导数的几何意义的应用,属常考题,较难.解题的关键是在第二问中根据直线y=kx与函数y=f(x)的图象相切和导数的几何意义得出k=f′(x0)而直线y=kx有过原点故k=kOA从而建立了关于x0的等式
1+Inx0
x
2
0
=-
Inx0
x
2
0
但要注意x0>0!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案