(本题满分12分)
如图所示, 有两个独立的转盘、.两个图中三个扇形区域的圆心角分别为、、.用这两个转盘进行玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不会动,当指针恰好落在分界线时,则这次结果无效,重新开始),记转盘指针对的数为,转盘指针对的数为.设的值为,每转动一次则得到奖励分分.
(Ⅰ)求<2且>1的概率;
(Ⅱ) 某人玩12次,求他平均可以得到多少奖励分?
(本小题满分12分)
解:(Ⅰ)由几何概率模型可知:P(=1)=、P(=2)=、P(=3)=;
P(=1)=、P(=2)=、P(=3)=…………………………………………….2分
则P(<2)= P(=1)=,P(>1)= P(=2)+ P(=3)=+=
所以P(<2且>1)= P(<2)
P(>1)=…………………………………….6分
(Ⅱ)由条件可知的取值为:2、3、4、5、6. 则的分布列为:
| 2 | 3 | 4 | 5 | 6 |
P |
|
|
|
|
|
…………………………………………………………………………………………………………………………………………………………..………10分
他平均一次得到的钱即为的期望值:
所以给他玩12次,平均可以得到分..……………………………………………………..12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com