精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|cos2x=$\frac{1}{2}$},B={x|0<x<π},则集合A∩B元素的个数是(  )
A.4B.3C.2D.1

分析 根据当0<x<π得出0<2x<2π,再由方程cos2x=$\frac{1}{2}$解得x=$\frac{π}{6}$或$\frac{5π}{6}$,所以集合A∩B有两个元素.

解答 解:当0<x<π时,0<2x<2π,
由方程cos2x=$\frac{1}{2}$解得,
2x=$\frac{π}{3}$或$\frac{5π}{3}$,
解得x=$\frac{π}{6}$或$\frac{5π}{6}$,
因此,集合A∩B={$\frac{π}{6}$,$\frac{5π}{6}$},
即该集合有两个元素,
故选:C.

点评 本题主要考查了交集及其运算,以及三角函数中的给值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.当关于x的方程的根满足下列条件时,求实数a的取值范围:
(1)方程x2-ax+a2+2=0的两个根一个大于2,另一个小于2;
(2)方程ax2+3x+4a=0的两根都小于1;
(3)方程7x2-(a+13)x+a2-a-2=0的一个根在(0,1)内,另一个根在(1,2)内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在边长为2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E,F是PA和AB的中点,求PA与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知直线l1:(m+1)x+(m2-2m)y+4=0,l2:2x+(m-2)y-1=0,如果直线l1∥l2,求m的值;
(2)已知直线l1:nx+(2-n)y=3,l2:(n-2)x+(2n+4)y=2,如果这两条直线相互垂直,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x|2-x|,解不等式:f(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在满足极坐标和直角坐标互化条件下,极坐标方程ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$经过直角坐标系下的伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{\sqrt{3}}{3}y}\end{array}\right.$后,得到的曲线是(  )
A.直线B.椭圆C.双曲线D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在如图所示的△ABC中,内角A,B,C所对的边的长分别为a,b,c,已知a=c,且满足$cosC+({cosA-\sqrt{3}sinA})cosB=0$,若点O是△ABC外一点,且OA=2OB=4,∠AOB=θ,则四边形OACB面积的最大值为(  )
A.$4+4\sqrt{3}$B.$5+4\sqrt{3}$C.12D.$8+5\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直三棱柱ABC-A1B1C1中,D,E,F分别为BC,BB1,AA1的中点,求证:平面B1FC∥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{f(x-1),x>0}\\{-2,x=0}\\{{3}^{x},x<0}\end{array}\right.$,则f(2)=-2.

查看答案和解析>>

同步练习册答案