【题目】某学校有两个参加国际中学生交流活动的代表名额,为此该学校高中部推荐2男1女三名候选人,初中部也推荐了1男2女三名候选人。若从6名学生中人选2人做代表。
求:(1)选出的2名同学来自不同年相级部且性别同的概率;
(2)选出的2名同学都来自高中部或都来自初中部的概率。
【答案】(1);(2).
【解析】
分析:设高中部:男生,;女生。初中部:男生;女生,,列出可得的总的基本事件,共个,
⑴设,事件中包含了个基本事件,代入公式可得答案
⑵设,事件中包含了个基本事件,代入公式可得答案
详解:设高中部:男生A1,A2;女生B1。初中部:男生a1;女生b1,b2
总的基本事件:A1,A2//A1,B1//A1,a1//A1,b1//A1,b2//
A2,B1//A2,a1//A2,b1//A2,b2//
B1,a1//B1,b1//B1,b2//
a1,b1//a1,b2//
b1,b2// 共计15个
(1)设A={“选出的2名同学来自不同年相级部且性别同”}
则A中包含的基本事件有:A1,a1//A2,a1//B1,b1//B1,b2// 共计4个
所以P(A)=
(2)设B={“选出的2名同学都来自高中部或都来自初中部”}
则B中包含的基本事件有: A1,A2//A1,B1//A2,B1//a1,b1//a1,b2//b1,b2// 共计6个
所以P(B)=
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,已知(),且.
(1)证明为等比数列,并求数列的通项公式;
(2)设,且证明;
(3)在(2)小问的条件下,若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(xR),g(x)=2a-1
(1)求函数f(x)的单调区间与极值.
(2)若f(x)≥g(x)对恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
(1)求的取值范围;
(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的右焦点为F,上顶点为A,短轴长为2,O为原点,直线AF与椭圆C的另一个交点为B,且△AOF的面积是△BOF的面积的3倍.
(1)求椭圆C的方程;
(2)如图,直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四组函数,表示同一函数的是( )
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.(x)=|x+1|,g(x)=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com