精英家教网 > 高中数学 > 题目详情

【题目】某学校有两个参加国际中学生交流活动的代表名额,为此该学校高中部推荐2男1女三名候选人,初中部也推荐了1男2女三名候选人。若从6名学生中人选2人做代表。

求:(1)选出的2名同学来自不同年相级部且性别同的概率;

(2)选出的2名同学都来自高中部或都来自初中部的概率。

【答案】(1);(2).

【解析】

分析:设高中部:男生;女生。初中部:男生;女生,列出可得的总的基本事件,共个,

,事件中包含了个基本事件,代入公式可得答案

,事件中包含了个基本事件,代入公式可得答案

详解:设高中部:男生A1,A2;女生B1。初中部:男生a1;女生b1,b2

总的基本事件:A1,A2//A1,B1//A1,a1//A1,b1//A1,b2//

A2,B1//A2,a1//A2,b1//A2,b2//

B1,a1//B1,b1//B1,b2//

a1,b1//a1,b2//

b1,b2// 共计15个

(1)设A={“选出的2名同学来自不同年相级部且性别同”}

则A中包含的基本事件有:A1,a1//A2,a1//B1,b1//B1,b2// 共计4个

所以P(A)=

(2)设B={“选出的2名同学都来自高中部或都来自初中部”}

则B中包含的基本事件有: A1,A2//A1,B1//A2,B1//a1,b1//a1,b2//b1,b2// 共计6个

所以P(B)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知),且.

(1)证明为等比数列,并求数列的通项公式;

(2),且证明

(3)在(2)小问的条件下,若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)判断函数的奇偶性

(2) 判断函数(1,+)上的单调性,并用定义证明你的结论;

(3)求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=xR),gx=2a-1

1)求函数fx的单调区间与极值

2)若fx≥gx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用空间向量解决下列问题:如图,在斜三棱柱中, 的中点, ⊥平面

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD—A1B1C1D1中,试在DD1确定一点P,使得直线BD1∥平面PAC,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为F,上顶点为A,短轴长为2,O为原点,直线AF与椭圆C的另一个交点为B,且△AOF的面积是△BOF的面积的3倍.
(1)求椭圆C的方程;
(2)如图,直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数,表示同一函数的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.(x)=|x+1|,g(x)=

查看答案和解析>>

同步练习册答案