精英家教网 > 高中数学 > 题目详情

如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求的值.

(1)见解析   (2)

解析(1)证明 因为ABCD为矩形,所以AB⊥BC.
因为平面ABCD⊥平面BCE,
平面ABCD∩平面BCE=BC,AB?平面ABCD,
所以AB⊥平面BCE.
因为CE?平面BCE,所以CE⊥AB.
因为CE⊥BE,AB?平面ABE,BE?平面ABE,AB∩BE=B,
所以CE⊥平面ABE.
因为CE?平面AEC,所以平面AEC⊥平面ABE.
(2)解 连接BD交AC于点O,连接OF.

因为DE∥平面ACF,DE?平面BDE,平面ACF∩平面BDE=OF,
所以DE∥OF.
又因为矩形ABCD中,O为BD中点,
所以F为BE中点,即=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E、G分别是棱SA、

SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥PABCD中,底面ABCD为正方形,PD⊥平面ABCDECPD,且PD=2EC.

(1)求证:BE∥平面PDA
(2)若N为线段PB的中点,求证:NE⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴转动.

(1)当平面ADB⊥平面ABC时,求CD.
(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点的中点。

(1)求证:∥平面
(2)如果点的中点,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EFBDABEF.

(1)求证:BF∥平面ACE
(2)求证:BFBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:BC⊥平面PAC
(2)设QPA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

同步练习册答案