精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面为菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)求三棱锥P-BDC的体积.
(Ⅲ)在线段PC上是否存在一点E,使PC⊥平面EBD成立.如果存在,求出EC的长;如果不存在,请说明理由.

【答案】分析:(1)通过证BD⊥AC,BD⊥PA,得出BD⊥平面PAC,又BD在平面PBD内,推出平面PBD⊥平面PAD.
(2)直接利用,求解几何体的体积.
(3)设AC∩BD=O,则EO⊥PC,利用△COE∽△CPA,求出CE即可.
解答:解:(1)证明:因为四棱锥P-ABCD的底面为菱形,所以BD⊥AC,
又PA⊥底面ABCD,BD?平面ABCD,∴BD⊥PA,
因为PA∩AC=A,
∴BD⊥平面PAC,又BD在平面PBD内,
所以平面PBD⊥平面PAD
(2)因为PA⊥底面ABCD,所以PA是底面BCD上的高,
所以:
(3)存在;
设AC∩BD=O,则EO⊥PC,
易知△COE∽△CPA,
四棱锥P-ABCD的底面为菱形 且∠ABC=120°,AB=2,PA=
AC=2CO=2,PC==

=

点评:本题考查空间想象能力,直线与平面垂直,平面与平面垂直,几何体的体积的计算,存在性问题的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案