精英家教网 > 高中数学 > 题目详情
已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1l2l1交抛物线E于点ABl2交抛物线E于点GH,求的最小值.
(1)椭圆C的标准方程为,抛物线E的标准方程为.(2)有最小值为16.

试题分析:(1)由于椭圆上任意一点到焦点的距离都等于,所以
,由此即得椭圆的标准方程.椭圆右顶点F的坐标为(1,0),所以抛物线E的标准方程为.(2)设,则 
.再设l1的方程:l2的方程,用韦达定理将上式表示为即可求得其最小值.
试题解析:(1)设椭圆的标准方程为(a>b>0),焦距为2c
则由题意得c=

∴椭圆C的标准方程为.         4分
∴右顶点F的坐标为(1,0).
设抛物线E的标准方程为,∴
∴抛物线E的标准方程为.      6分
(2)设l1的方程:l2的方程

消去y得:

消去y得:
     9分







当且仅当时,有最小值16.  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆,直线相交于两点,轴、轴分别相交于两点,为坐标原点.
(1)若直线的方程为,求外接圆的方程;
(2)判断是否存在直线,使得是线段的两个三等分点,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,M、N分别是椭圆=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.

(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足APQ=BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且PT的最小值为(a-c),则椭圆的离心率e的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0.
 
(1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,是椭圆长轴的一个端点,是椭圆短轴的一个端点,为椭圆的一个焦点.若,则该椭圆的离心率为 (  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案