精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\sqrt{-{x^2}+4x-3}$的定义域为M.
(1)求f(x)的定义域M;
(2)求当x∈M时,求函数g(x)=4x-a•2x+1(a为常数,且a∈R)的最小值.

分析 (1)根据根式的被开方式非负,列出不等式求出解集即可;
(2)由x∈M时,求出2x的取值范围,由此讨论a的取值,从而求出g(x)的最小值即可.

解答 解:(1)∵函数$f(x)=\sqrt{-{x^2}+4x-3}$,
∴-x2+4x-3≥0,
即(x-1)(x-3)≤0,
解得1≤x≤3,
∴f(x)的定义域M=[1,3];
(2)当x∈M时,即x∈[1,3],∴2x∈[2,8].
∴函数g(x)=4x-a•2x+1=(2x2-2a•2x=(2x-a)2-a2
当a≤2时,g(x)在x∈[1,3]上是增函数,
∴g(x)的最小值是g(1)=4-4a;
当2<a<8时,g(x)在x∈[1,3]上先减后增,
∴g(x)的最小值是-a2
当a≥8时,g(x)在x∈[1,3]上是减函数,
∴g(x)的最小值是g(3)=64-16a;
则有${g_{min}}(x)=\left\{{\begin{array}{l}{4-4a(a≤2)}\\{-{a^2}(2<a<8)}\\{64-16a(a≥8)}\end{array}}\right.$

点评 本题考查了求函数的定义域和最小值的求法,也考查了分类讨论思想的应用,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x∈[0,1]时,f(x)=2x-1,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是(  )
A.$[\frac{1}{4},\frac{1}{3})$B.$(0,\frac{1}{2})$C.$(0,\frac{1}{4}]$D.$(\frac{1}{3},\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10m(如图所示),则旗杆的高度为(  )
A.10 mB.30 mC.10mD.10m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数是幂函数的是(  )
A.$y=2{x^{\frac{1}{2}}}$B.y=x3+xC.y=2xD.$y={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\frac{{lg\sqrt{2}+lg3-lg\sqrt{10}}}{lg1.8}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的周长为20,且顶点B(-4,0),C(4,0),则顶点A的轨迹方程是(  )
A.$\frac{x^2}{36}+\frac{y^2}{20}$=1(y≠0)B.$\frac{x^2}{20}+\frac{y^2}{36}$=1(y≠0)
C.$\frac{x^2}{6}+\frac{y^2}{20}$=1(y≠0)D.$\frac{x^2}{20}+\frac{y^2}{6}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知方程$\frac{x^2}{2-k}+\frac{y^2}{2k-1}$=1表示焦点在y轴上的椭圆,则实数k的取值范围是1<k<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*),经计算得f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,则可以归纳出一般结论:当n≥2时,有$f({2^n})>\frac{n+2}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{{2}^{x}+a}{{2}^{x}-1}$.
(1)求函数定义域;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下利用定义证明:f(x)在(0,+∞)为减函数.

查看答案和解析>>

同步练习册答案