精英家教网 > 高中数学 > 题目详情
16.已知四棱锥ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱AA1⊥底面ABCD,若得二面角A1-BD-C1的大小为60°,求四棱柱ABCD-A1B1C1D1的体积.

分析 求出四棱柱ABCD-A1B1C1D1的高,即可求出四棱柱ABCD-A1B1C1D1的体积.

解答 解:连接AC,与BD交于O,连接OA1,OC1,则
∵二面角A1-BD-C1的大小为60°,
∴∠A1OC1=60°,
∴△A1OC1是等边三角形,
∵四棱锥ABCD-A1B1C1D1的底面是边长为2的正方形,
∴四棱柱ABCD-A1B1C1D1的高为$2\sqrt{2}×\frac{\sqrt{3}}{2}$=$\sqrt{6}$,
∴四棱柱ABCD-A1B1C1D1的体积V=2×$2×\sqrt{6}$=4$\sqrt{6}$.

点评 本题考查求四棱柱ABCD-A1B1C1D1的体积,求出四棱柱ABCD-A1B1C1D1的高是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y+1≥0}\\{3x-y-1≤0}\end{array}\right.$,则z=x-y的最大值为(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点A是以F1为圆心,b为半径的圆与双曲线的一个交点,且AF2与圆相切,则该双曲线的离心率为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=loga(3x-2)+2的图象必过定点(  )
A.(1,2)B.(2,2)C.(2,3)D.($\frac{2}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log2x+1的定义域是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足$f(3x-1)<f(\frac{1}{3})$的x的取值范围是($\frac{2}{9}$,$\frac{4}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)满足①f(2-x)=f(x);②f(x+2)=f(x-2);③x1,x2∈[1,3]时,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则f(2014),f(2015),f(2016)大小关系为(  )
A.f(2014)>f(2015)>f(2016)B.f(2016)>f(2014)>f(2015)
C.f(2016)=f(2014)>f(2015)D.f(2014)>f(2015)=f(2016)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若a=$\sqrt{2}$,b=1,f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{1}{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等边△ABC中,D,E分别是AC,AB的中点,沿DE将△ADE折起,使平面ADE⊥平面BCDE(如图所示).
 (1)求证:平面ABC⊥平面ABE;
(2)求直线AC与平面ABE所成角的正弦值.

查看答案和解析>>

同步练习册答案