精英家教网 > 高中数学 > 题目详情
如图,在三棱锥A-BCD中,DA,DB,DC两两垂直,且DB=DC=2,点E为BC的中点,若直线AE与底面BCD所成的角为45°,则三棱锥A-BCD的体积等于(  )
A.
2
3
B.
4
3
C.2D.
2
2
3

∵DB=DC=2,点E为BC的中点,∴DE⊥BC,DE=
2

∵DA,DB,DC两两垂直,∴AD⊥平面DBC,
∴∠AED为直线AE与底面BCD所成的角
∵直线AE与底面BCD所成的角为45°,∴∠AED=45°,
∴AD=DE=
2

∴三棱锥A-BCD的体积等于
1
3
×
1
2
×2×2×
2
=
2
2
3

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°.则异面直线AO与BC的夹角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=
3
,则异面直线AD,BC所成的角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求异面直线AE与CD所成角的余弦值;
(3)求平面PAB与平面PCD所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,下列几种说法正确的是(  )
A.A1C1⊥ADB.D1C1⊥AB
C.AC1与DC成45°角D.A1C1与B1C成60°角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB
,E是SA的中点.
(1)求证:平面BED⊥平面SAB;
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D中,异面直线A1D与D1C所成的角为______度;直线A1D与平面AB1C1D所成的角为______度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BCAD,且AB=AD=2BC,E,F分别是PB、PD的中点.
(1)证明:EF平面ABCD;
(2)若PA=AB,求PC与平面PAD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将等边三角形ABC沿中线AD对折使BD⊥AC,那么AB与平面ACD所成的角是______.

查看答案和解析>>

同步练习册答案