精英家教网 > 高中数学 > 题目详情

【题目】下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.

【答案】

【解析】

该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.

该几何体的直观图如图所示,

该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.

两个四棱柱的体积和为.

交叉部分的体积为四棱锥的体积的2.

在等腰中,边上的高为2,则

由该几何体前后,左右上下均对称,知四边形为边长为的菱形.

的中点为,连接易证即为四棱锥的高,

中,

所以

因为,所以

所以求体积为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的右焦点为,离心率为,过点的直线相交于两点,点为线段的中点.

1)当的倾斜角为时,求直线的方程;

2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

设函数fx=x+ax2+blnx,曲线y=fx)过P1,0),且在P点处的切斜线率为2.

I)求ab的值;

II)证明:f(x)≤2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若,设,证明:,使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求处的切线与两坐标轴围成的三角形的面积;

2)若上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励

1)求1名顾客摸球2次停止摸奖的概率:

2)记1名顾客5次摸奖获得的奖金数额,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是坐标原点,过的直线分别交抛物线两点,直线与过点平行于轴的直线相交于点,过点与此抛物线相切的直线与直线相交于点.则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线的焦点,过F的动直线交抛物线CAB两点.当直线与x轴垂直时,.

1)求抛物线C的方程;

2)若直线AB与抛物线的准线l相交于点M,在抛物线C上是否存在点P,使得直线PAPMPB的斜率成等差数列?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面,点分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)若为线段上的点,且直线与平面所成的角为,求线段的长.

查看答案和解析>>

同步练习册答案