精英家教网 > 高中数学 > 题目详情
17.设集合A={x∈Z|x2≤4},B={x|x>-1},则A∩B=(  )
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

分析 先分别求出集合A,B,由此能求出A∩B.

解答 解:∵集合A={x∈Z|x2≤4}={-2,-1,0,1,2},
B={x|x>-1},
∴A∩B={0,1,2}.
故选:D.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤1}\\{y≥a}\end{array}\right.$,若μ=2x-y的最小值为-4,则实数a等于(  )
A.-4B.-3C.-2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}x+y-4≤0\\ y-1≥0\\ x-1≥0\end{array}\right.$,则z=xy的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={x||x|≤2},B={x|3x-2≥1},则A∩B={x|1≤x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数$f(x)=x+\frac{1}{x}+a$为定义在(-∞,0)∪(0,+∞)上的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在区间(a+1,+∞)上的单调性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${({2-\sqrt{x}})^n}$的二次展开式中,所有项的二项式系数之和为256,则展开式中x4项的系数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“?x∈R,x2-x≥0”的否定是(  )
A.?x∈R,x2-x<0B.?x∈R,x2-x≤0
C.$?{x_0}∈R,{x_0}^2-{x_0}≤0$D.$?{x_0}∈R,x_0^2-{x_0}<0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在棱长都是1的四面体ABCD中,$\overrightarrow{AB}$•$\overrightarrow{CD}$等于(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某圆圆心在x轴上,半径为$\sqrt{5}$,且与直线x+2y=0相切,则此圆的方程为(x±5)2+y2=5.

查看答案和解析>>

同步练习册答案