精英家教网 > 高中数学 > 题目详情
已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列{
1
an
}
的前5项和为(  )
A、
15
8
或5
B、
31
16
或5
C、
31
16
D、
15
8
分析:利用等比数列求和公式代入9s3=s6求得q,进而根据等比数列求和公式求得数列{
1
an
}
的前5项和.
解答:解:显然q≠1,所以
9(1-q3)
1-q
=
1-q6
1-q
?1+q3?q=2

所以{
1
an
}
是首项为1,公比为
1
2
的等比数列,
前5项和T5=
1-(
1
2
)
5
1-
1
2
=
31
16

故选C
点评:本题主要考查等比数列前n项和公式及等比数列的性质,属于中等题.在进行等比数列运算时要注意约分,降低幂的次数,同时也要注意基本量法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是首项为19,公差为-2的等差数列,sn为{an}的前n项和.
(1)求通项an及sn
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列{
1
an
}
的前5项和为(  )
A、
85
32
B、
31
16
C、
15
8
D、
85
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的等差数列,其公差d>0,且a3,a7+2,3a9成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求f(n)=
Sn(n+6) Sn+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的等比数列,sn是{an}的前n项和,且8a3=a6,则数列{an}的前5项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为a1,公比为q(q≠1)的等比数列,其前n项和为Sn,且有
S10
S5
=
33
32
,设bn=2q+Sn
(1)求q的值;
(2)数列{bn}能否为等比数列?若能,请求出a1的值;若不能,请说明理由;
(3)在(2)的条件下,求数列{nbn}的前n项和Tn

查看答案和解析>>

同步练习册答案