精英家教网 > 高中数学 > 题目详情
15.设集合A={x|-7≤2x-5≤9},S={x|k+1≤x≤2k-1},
(1)若S≠∅且S⊆A,求k的取值范围:
(2)当A∩S=∅时,求k的取值范围.

分析 (1)若S≠∅且S⊆A,可得$\left\{\begin{array}{l}{k+1≥-1}\\{2k-1≤7}\\{2k-1≥k+1}\end{array}\right.$,即可求k的取值范围:
(2)当A∩S=∅时,分类讨论,即可求k的取值范围.

解答 解:(1)A={x|-7≤2x-5≤9}={x|-1≤x≤7},
∵S≠∅且S⊆A,
∴$\left\{\begin{array}{l}{k+1≥-1}\\{2k-1≤7}\\{2k-1≥k+1}\end{array}\right.$,
∴2≤k≤4;
(2)S=∅,则2k-1<k+1,∴k<2;
S≠∅,则$\left\{\begin{array}{l}{2k-1≥k+1}\\{2k-1<-1}\end{array}\right.$或$\left\{\begin{array}{l}{2k-1≥k+1}\\{k+1>7}\end{array}\right.$,∴k>6.
综上所述,k<2或k>6.

点评 本题考查集合的运算,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-c=0.
(Ⅰ)求A;
(Ⅱ)若a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若cos(π-α)=$\frac{4}{5}$,且α是第二象限角,则sinα的值为(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补充画出函数f(x)的完整图象,并根据图象写出函数f(x)的单调区间;
(2)已知关于x的方程f(x)=m有两个不等的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列关系式中哪些是正确的(  )
①aman=amn,②(amn=(anm③loga(MN)=logaM+logaN
④loga(M-N)=logaM÷logaN.以上各式中a>0且a≠1,M>0,N>0.
A.①③B.②④C.②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式$\sqrt{{-x}^{2}-4x}$≤$\frac{4}{3}$x+1-a的解集是[-4,0].则a的取值范围是(-∞,-5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$lo{g}_{a}\frac{3}{4}$<0,则a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\sqrt{4-x^2}$-log2x的值域为(  )
A.(-∞,-1)B.(-∞,1]C.[-1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求y=$\frac{1}{\sqrt{9-x}}$的定义域(用区间表示).

查看答案和解析>>

同步练习册答案