【题目】解不等式( )x﹣x+ >0时,可构造函数f(x)=( )x﹣x,由f(x)在x∈R是减函数,及f(x)>f(1),可得x<1.用类似的方法可求得不等式arcsinx2+arcsinx+x6+x3>0的解集为( )
A.(0,1]
B.(﹣1,1)
C.(﹣1,1]
D.(﹣1,0)
科目:高中数学 来源: 题型:
【题目】已知向量 =(sinA, )与 =(3,sinA+ )共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b∈R,函数 ,g(x)=ex(e为自然对数的底数),且函数f(x)的图象与函数g(x)的图象在x=0处有公共的切线.
(Ⅰ)求b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若g(x)>f(x)在区间(﹣∞,0)内恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C: =1经过点(2,3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.
(1)求双曲线C的方程;
(2)若l过原点,P为双曲线上异于A,B的一点,且直线PA,PB的斜率kPA , kPB均存在,求证:kPAkPB为定值;
(3)若l过双曲线的右焦点F1 , 是否存在x轴上的点M(m,0),使得直线l绕点F1无论怎样转动,都有 =0成立?若存在,求出M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin2x+cos2( ﹣x)﹣ (x∈R).
(1)求函数f(x)在区间[0, ]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)= ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{bn}的前n项和为Sn , 且对任意正整数n,都有 ;
(1)试证明数列{bn}是等差数列,并求其通项公式;
(2)如果等比数列{an}共有2017项,其首项与公比均为2,在数列{an}的每相邻两项ai与ai+1之间插入i个(﹣1)ibi(i∈N*)后,得到一个新数列{cn},求数列{cn}中所有项的和;
(3)如果存在n∈N* , 使不等式 成立,若存在,求实数λ的范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元. (Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com