精英家教网 > 高中数学 > 题目详情
曲线与直线有两个交点,则的取值范围为(   )
A.B.
C.D.
A

试题分析:画出及y=2x的图象,当过(-2,0)时,m=4;当过(2,0)时,m=-4;观察知,时,曲线与直线有两个交点,关系A。

点评:基础题,涉及绝对值函数的图形分析,根据已知题意画出图形,然后根据数形结合分析m的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为.
(1)求抛物线的方程;
(2)求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求过两直线的交点,且满足下列条件的直线的方程.
(Ⅰ)和直线垂直;
(Ⅱ)在轴,轴上的截距相等.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为,直线与椭圆相交于点,当的周长最大时,的面积是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点和点为抛物线上一点,则的最小值是(  )
A.3B.9C.12D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆经过点,且其右焦点与抛物线的焦点F重合.
(Ⅰ)求椭圆的方程;
(II)直线经过点与椭圆相交于A、B两点,与抛物线相交于C、D两点.求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线,过其一个焦点且垂直于实轴的直线与双曲线交于两点,O是坐标原点,满足,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

同步练习册答案