精英家教网 > 高中数学 > 题目详情
对定义域为D的函数,若存在距离为d的两条平行直线l1:y=kx+m1和l2:y=kx+m2,使得当x∈D时,kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)在(x∈D)有一个宽度为d的通道.有下列函数:
①f(x)=
1
x

②f(x)=sinx;
③f(x)=
x2-1

④f(x)=x3+1.
其中在[1,+∞)上通道宽度为1的函数是(  )
A、①③B、②③C、②④D、①④
分析:①只需考虑反比例函数在[1,+∞)上的值域即可,
②要分别考虑函数的值域和图象性质,
③则需从函数图象入手,寻找符合条件的直线,
④考虑幂函数的图象和性质,才可做出正确判断.
解答:解:①当x∈[1,+∞)时,0<
1
x
≤1,此时存在直线y=0,y=1,满足两直线的距离d=1,使0≤f(x)≤1恒成立,
故在[1,+∞)有一个宽度为1的通道,∴①满足条件.
②当x∈[1,+∞)时,-1≤sinx≤1,则函数值的最大值和最小值之间的距离d=2,
故在[1,+∞)不存在一个宽度为1的通道;
③当x∈[1,+∞)时,f(x)=
x2-1
表示双曲线x2-y2=1在第一象限的部分,双曲线的渐近线为y=x,故可取另一直线为y=x-
2

满足两直线的距离d=1,使x≤f(x)≤x-
2
恒成立,∴③满足在[1,+∞)有一个宽度为1的通道;
④当x∈[1,+∞)时,f(x)=x3+1≥2,且函数单调递增,故在[1,+∞)不存在一个宽度为1的通道;
故选:A.
点评:本题主要考查了对新定义性质的理解和运用,熟知已知四个函数的图象和性质,是解决本题的关键.考查学生的推理和判断能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为D的函数f(x),对任意x∈D,存在正数K,都有|f(x)|≤K成立,则称函数f(x)是D上的“有界函数”.已知下列函数:①f(x)=2sin x;②f(x)=
1-x2
;③f(x)=1-2x;④f(x)=
x
x2+1
,其中是“有界函数”的是
 
.(写出所有满足要求的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为D的函数f(x)同时满足条件①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[ka,kb](k∈N+),那么我们把f(x)叫做[a,b]上的“k级矩阵”函数,函数f(x)=x3是[a,b]上的“1级矩阵”函数,则满足条件的常数对(a,b)共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)定义域为D的函数f(x),其导函数为f′(x).若对?x∈D,均有f(x)<f′(x),则称函数f(x)为D上的梦想函数.
(Ⅰ)已知函数f(x)=sinx,试判断f(x)是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数g(x)=ax+a-1(a∈R,x∈(0,π))为其定义域上的梦想函数,求a的取值范围;
(Ⅲ)已知函数h(x)=sinx+ax+a-1(a∈R,x∈[0,π])为其定义域上的梦想函数,求a的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义域为D的函数,若存在距离为d的两条平行直线l1:y=kx+m1和l2:y=kx+m2,使得当x∈D时,kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)在(D)有一个宽度为d的通道。有下列函数:

①f(x)=;②f(x)=sinx;③f(x)=;④f(x)=x3+1。其中在[1,+∞)上通道宽度为1的函数是(  )

查看答案和解析>>

同步练习册答案
鍏� 闂�