精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,,点分别为的中点.

(1)求直线与平面所成角的正弦值;
(2)求二面角的大小.

(1)(2)二面角的正切值为

解析试题分析:解:(法一)(1)连接,与的交点为,在中, .
,点的中点,.又,则.
,而,则,
为直线与平面所成的角, ,.
.

,,
中,,
直线与平面所成角的正弦值为             6分
(2)过点于点,连接,
,平面,即在平面内的射影, 为二面角的平面角.
中,,,
二面角的正切值为.        12分
(法二)建立间直角坐标系如图,则,,,,,

(1)由已知可得,=为平面的法向量=,
.
直线与面所成角的正弦值为.          6分
(2)设平面的法向量为,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。

(1)求证:AD⊥PB;
(2)求异面直线PD与AB所成角的余弦值;
(3)求平面PAB与平面PCD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥E—ABCD中,底面ABCD是平行四边形。∠ABC=45°,BE=BC=   EA=EC=6,M为EC中点,平面BCE⊥平面ACE,AE⊥EB

(I)求证:AE⊥BC (II)求四棱锥E—ABCD体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,分别为的中点,,且

(1)证明:
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知菱形所在平面与直角梯形所在平面互相垂直,,分别是线段,的中点.

(I)求证:平面 平面;
(Ⅱ)点在直线上,且//平面,求平面与平面所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为正方形的中心,四边形是平行四边形,且平面平面,若.

(1)求证:平面.
(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体中,面中心为

(1)求证:
(2)求异面直线所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,M、N分别是AB、PC的中点,且.证明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。

(I)求证:A1B∥平面AMC1
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案