【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,过原点的直线(与坐标轴不重合)与椭圆交于点、,直线、分别与轴交于点、.
(1)若,求点的横坐标;
(2)设直线、的斜率分别为、,求的值.
科目:高中数学 来源: 题型:
【题目】将函数f(x)=2sinx(sinxcosx)﹣1图象向右平移个单位得函数g(x)的图象,则下列命题中正确的是( )
A.f(x)在(,)上单调递增
B.函数f(x)的图象关于直线x对称
C.g(x)=2cos2x
D.函数g(x)的图象关于点(,0)对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列结论:
①下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的,分别为8,12,则输出的;
②若用样本数据0,-1,2,3来估计总体的标准差,则总体的标准差估计值为;
③命题:“若,则”的否命题是“若,则”;
④已知正数,满足,则的最大值是;
⑤已知函数满足,,且当时,.则在区间为增函数.
其中结论正确的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两次测角法”,并自制了测量工具:将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子滚动一周为1.753米).该小组在操场上选定A点,此时测量视线和铅锤线之间的夹角在量角器上度数为37°;推动自行车直线后退,轮子滚动了10卷达到B点,此时测量视线和铅锤线之间的夹角在量角器上度数为53°.测量者站立时的“眼高”为1.55m,根据以上数据可计算得该建筑物的高度约为___________米.(精确到0.1)
参考数据:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,后清陆以湉《冷庐杂识》卷一中写道“近又有七巧图,其式五,其数七,其变化之式多至千余”在18世纪,七巧板流传到了国外,被誉为“东方魔板”,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.完整图案为一正方形(如图):五块等腰直角三角形、一块正方形和一块平行四边形,如果在此正方形中随机取一点,那么此点取自阴影部分的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一种类型的题目,此类题目有六个选项A、B、C、D、E、F,其中有三个正确选项,满分6分,赋分标准为“每选对一个得2分,每选错一个扣3分,最低得分为0分”.在某校的一次测试中出现了这种类型的题目,已知此题的正确答案是A、C、D,假定考生作答的答案中选项的个数不超过三个.
(1)若甲同学只能判断选项A、D是正确的,现在他有两种选择:一种是将A、D作为答案,另一种是在B、C、E、F这四个选项中任选一个与A、D组成一个含三个选项的答案.则甲同学的最佳选择是哪一种?请说明理由;
(2)若乙同学无法判断所有选项,他决定在6个选项中任选3个作为答案:
(i)设乙同学此题得分为分,求的分布列;
(ii)已知有20名和乙同学情况相同的同学,且这20名考生答案互不相同,他们此题的平均得分为a分,现从这20名考生中任选3名考生,计算得到这3人平均得分为b分,试求a的值及的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com