精英家教网 > 高中数学 > 题目详情

【题目】若定义在R上的函数满足,且当时, ,则函数在区间[-7,1]上的零点个数为( )

A. 4 B. 6 C. 8 D. 10

【答案】C

【解析】定义在R上的函数f(x)满足f(x)=f(x),f(2x)=f(x),

∴函数f(x)是偶函数,且函数的图象关于x=1对称。

∵设g(x)=xex,其定义域为R,g′(x)=(xex)′=xex+x(ex)′=ex+xex

g′(x)=ex+xex=ex(1+x)=0,解得:x=1.

列表:

x

(∞,1)

1

(1,+∞)

g′(x)

0

+

g(x)

极小值

由表可知函数g(x)=xex的单调递减区间为(∞,1),单调递增区间为(1,+∞).

x=1,函数g(x)=xex的极小值为 .

故函数y=|xex|x=1时取得极大值为

y=|xex|(∞,1)上是增函数,(1,∞)上是减函数,

在区间[7,1],故当x<0,f(x)g(x)7个交点,当x>0时,有1个交点,共有8个交点,

如图所示:

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,处取得极值,求函数的单调区间;

(2)若时,函数有两个不同的零点

①求的取值范围;

②求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)b·ax(其中ab为常量,且a>0a1)的图象经过点A(1,6)B(3,24)

(1)f(x)

(2)若不等式m0x(1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, ,D是棱AC的中点,且.

(1)求证:

(2)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于,总有.(i)求实数的范围; (ii)求证:对于,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的图象与x轴无交点,求a的取值范围;

(2) 若函数[-1,1]上存在零点,求a的取值范围;

(3)设函数,当时,若对任意的,总存在,使得,求b的取值范围.

查看答案和解析>>

同步练习册答案