精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求f(x)的极值;
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.

解:(Ⅰ)f(x)的定义域为(0,+∞),f'(x)=
令f'(x)=0得x=e1-a
当x∈(0,e1-a)时,f'(x)>0,f(x)是增函数
当x∈(e1-a,+∞)时,f'(x)<0,f(x)是减函数
∴f(x)在x=e1-a处取得极大值,f(x)极大值=f(e1-a)=ea-1
(Ⅱ)(i)当e1-a<e2时,a>-1时,由(Ⅰ)知f(x)在(0,e1-a)上是增函数,在(e1-a,e2]上是减函数
∴f(x)max=f(e1-a)=ea-1
又当x=e-a时,f(x)=0,当x∈(0,e-a]时f(x)<0.
当x∈(e-a,e2]时,f(x)∈(0,ea-1],所以f(x)与图象g(x)=1的图象在(0,e2]上有公共点,等价于ea-1≥1
解得a≥1,又a>-1,所以a≥1
(ii)当e1-a≥e2即a≤-1时,f(x)在(0,e2]上是增函数,
∴f(x)在(0,e2]上的最大值为f(e2)=
所以原问题等价于,解得a≥e2-2.
又∵a≤-1,∴无解
综上实数a的取值范围是a≥1
分析:(Ⅰ)由函数求导,令f'(x)=0,求出根,分析其两侧导数的符号,确定函数的极值;
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,转化为求函数f(x)在区间(0,e2]上的值域,根据(Ⅰ)分类讨论函数在区间(0,e2]是的单调性,确定函数f(x)的最值.
点评:考查利用导数求函数的极值和闭区间上函数的最值问题,两个函数图象的交点问题一般转化为求函数的值域问题,特别注意含有参数的最值问题,对参数进行讨论,增加了题目的难度,体现了分类讨论的思想方法.属难题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省临沂市临沭县高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)的值域;
(II)试画出函数f(x)在区间[-1,5]上的图象.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市十一学校高三(上)第五次月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省衡阳八中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)求使f(x)≥0成立的x的取值集合;
(3)若不等式|f(x)-m|<2在上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省潍坊市高三(上)12月统考数学试卷(解析版) 题型:解答题

已知函数
(I)求f(x)的单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知成等差数列,且=9,求a的值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省部分重点中学联考高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的周期和及其图象的对称中心;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案