精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为,上顶点为BO为坐标原点,且向量的夹角为

求椭圆的方程;

,点P是椭圆上的动点,求的最大值和最小值;

设不经过点B的直线l与椭圆相交于MN两点,且直线BMBN的斜率之和为1,证明:直线l过定点.

【答案】(1);(2)最大值6,最小;(3)证明见解析.

【解析】

(1)由向量的夹角为,可得可得,即可得到椭圆方程;(2),代入椭圆方程,结合数量积公式可得利用二次函数的性质可得结果;(3)设不经过点的直线方程为:,联立椭圆方程可得运用韦达定理和直线的斜率公式,化简可得,代入直线方程即可得证.

椭圆,向量的夹角为

可得,即

则椭圆方程为

,可得,即

可得时,上式取得最小值时,取得最大值6,

的范围是

证明:当直线l的斜率不存在时,设

,得,此时MN重合,不符合题意;

设不经过点P的直线l方程为:

直线l必过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设样本数据x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),则y1 , y2 , …y2017的方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某河流在一段时间x min内流过的水量为y m3yx的函数,yf(x)=.

(1)x1变到8时,y关于x的平均变化率是多少?它代表什么实际意义?

(2)f′(27)并解释它的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(
A.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”
B.“若x+y=0,则x,y互为相反数”的逆命题为真命题
C.命题“x∈R,使得2x2﹣1<0”的否定是:“x∈R,均有2x2﹣1<0”
D.命题“若cosx=cosy,则x=y”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,则使不等式a2016>2017成立的所有正整数a1的集合为(
A.{a1|a1≥2017,a1∈N+}
B.{a1|a1≥2016,a1∈N+}
C.{a1|a1≥2015,a1∈N+}
D.{a1|a1≥2014,a1∈N+}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按进行奖励,没超出部分仍按销售利润的进行奖励记奖金总额为单位:万元,销售利润为单位:万元

1写出该公司激励销售人员的奖励方案的函数表达式;

2如果业务员老张获得万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的一个焦点与抛物线 的焦点相同,F1 , F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为4

(1)求椭圆C的方程;
(2)设椭圆C上的任意一点N(x0 , y0),从原点O向圆N:(x﹣x02+(y﹣y02=3作两条切线,分别交椭圆于A,B两点.试探究|OA|2+|OB|2是否为定值,若是,求出其值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正整数,其前n项和为Sn , an+1= ,若S3=10,则S180=(
A.600或900
B.900或560
C.900
D.600

查看答案和解析>>

同步练习册答案