精英家教网 > 高中数学 > 题目详情

【题目】已知x1 , x2是函数f(x)=2sin2x+cos2x﹣m在[0, ]内的两个零点,则sin(x1+x2)=

【答案】
【解析】解:x1 , x2是函数f(x)=2sin2x+cos2x﹣m在[0, ]内的两个零点, 可得m=2sin2x1+cos2x1=2sin2x2+cos2x2
即为2(sin2x1﹣sin2x2)=﹣cos2x1+cos2x2
即有4cos(x1+x2)sin(x1﹣x2)=﹣2sin(x2+x1)sin(x2﹣x1),
由x1≠x2 , 可得sin(x1﹣x2)≠0,
可得sin(x2+x1)=2cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
可得sin(x2+x1)=±
由x1+x2∈[0,π],
即有sin(x2+x1)=
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:

单位(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

(1)按照上述数据,求四归直线方程,其中

(2)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入﹣成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,A1B与AB1交于点D,A1C与AC1交于点E.求证:
(1)DE∥平面B1BCC1
(2)平面A1BC⊥平面A1ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.
(1)当 为何值时,平面CDG⊥平面A1DE?
(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)和动直线l:y=kx+b(k,b是参变量,且k≠0.b≠0)相交于A(x1 , y2),N)x2 , y2)两点,直角坐标系原点为O,记直线OA,OB的斜率分别为kOAkOB= 恒成立,则当k变化时直线l恒经过的定点为(
A.(﹣ p,0)
B.(﹣2 p,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2.
(Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了组数据作为研究对象,如下图所示((吨)为该商品进货量, (天)为销售天数):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

Ⅰ)根据上表数据在下列网格中绘制散点图;

Ⅱ)根据上表提供的数据,求出关于的线性回归方程

(Ⅲ)在该商品进货量(吨)不超过6(吨)的前提下任取两个值,求该商品进货量x(吨)恰有一个值不超过3(吨)的概率.

参考公式和数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:y2=8x,圆M:(x﹣2)2+y2=4,点N为抛物线E上的动点,O为坐标原点,线段ON的中点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)点Q(x0 , y0)(x0≥5)是曲线C上的点,过点Q作圆M的两条切线,分别与x轴交于A,B两点,求△QAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于20尺,该女子所需的天数至少为

查看答案和解析>>

同步练习册答案