【题目】已知椭圆的右焦点为,长半轴长与短半轴长的比值为.
(1)求椭圆的方程;
(2)设经过点的直线与椭圆相交于不同的两点,.若点在以线段为直径的圆上,求直线的方程.
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的非负半轴重合,且长度单位相同,直线的极坐标方程为,曲线(为参数).其中.
(1)试写出直线的直角坐标方程及曲线的普通方程;
(2)若点为曲线上的动点,求点到直线距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )
A. , , 依次成公比为2的等比数列,且
B. , , 依次成公比为2的等比数列,且
C. , , 依次成公比为的等比数列,且
D. , , 依次成公比为的等比数列,且
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列{an}的前n项和为Sn,满足:对任意的n∈N*,都有an+1+Sn+1=1,又a1.
(1)求数列{an}的通项公式;
(2)令bn=log2an,求(n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过右焦点F与长轴垂直的直线与椭圆在第一象限相交于点M,.
(1)求椭圆C的标准方程;
(2)斜率为1的直线l与椭圆相交于B,D两点,若以线段BD为直径的圆恰好过坐标原点,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,直线:.
(Ⅰ)设是图象上一点,为原点,直线的斜率,若 在 上存在极值,求的取值范围;
(Ⅱ)是否存在实数,使得直线是曲线的切线?若存在,求出的值;若不存在,说明理由;
(Ⅲ)试确定曲线与直线的交点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线l与圆相交于不同的两点A,B.
(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】苹果是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的富士苹果,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:
产地 | |||||
批发价格 | |||||
市场份额 |
市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.
(1)从该地批发市场销售的富士苹果中随机抽取一箱,求该箱苹果价格低于元的概率;
(2)按市场份额进行分层抽样,随机抽取箱富士苹果进行检验,
①从产地共抽取箱,求的值;
②从这箱苹果中随机抽取两箱进行等级检验,求两箱产地不同的概率;
(3)由于受种植规模和苹果品质的影响,预计明年产地的市场份额将增加,产地的市场份额将减少,其它产地的市场份额不变,苹果销售价格也不变(不考虑其它因素).设今年苹果的平均批发价为每箱元,明年苹果的平均批发价为每箱元,比较的大小.(只需写出结论)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com