【题目】已知直线与、轴交于、两点.
(Ⅰ)若点、分别是双曲线的虚轴、实轴的一个端点,试在平面上找两点、,使得双曲线上任意一点到、这两点距离差的绝对值是定值.
(Ⅱ)若以原点为圆心的圆截直线所得弦长是,求圆的方程以及这条弦的中点.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sinxcosx将 f(x)的图象向右平移 (0<φ<π) 个单位,得到y=g(x)图象且g(x)的一条对称轴是直线x= .
(1)求φ;
(2)求函数y=g(x)的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知D是△ABC边BC延长线上一点,记 .若关于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有两解,则实数λ的取值范围是( )
A.λ<﹣2
B.λ<﹣4
C.
D.λ<﹣4或
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =(cosx,﹣ ), =(sinx+cosx,1),f(x)= ,
(1)若0<α< ,sinα= ,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x= 时,f(x)取得最大值3;当x= 时,f(x)取得最小值﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通项公式;
(2)求数列 的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,其前n项和为Sn , 且满足a1=1,an+1=2 +1,n∈N* .
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数k,使ak , S2k﹣1 , a4k成等比数列?若存在,求k的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com