分析 (1)x+$\sqrt{{x}^{2}+1}$>0恒成立,得到f(x)的定义域为R,
(2)由函数的解析式求出自变量,再把自变量和函数交换位置,即得反函数的解析式,
(3)根据对数函数的图象和性质,即可求出函数的值域.
解答 解:(1)∵x+$\sqrt{{x}^{2}+1}$>x+$\sqrt{{x}^{2}}$=x+|x|≥0,
∴x+$\sqrt{{x}^{2}+1}$>0恒成立,
∴f(x)的定义域为R,
(2)由y=lg(x+$\sqrt{{x}^{2}+1}$),
∴10y=x+$\sqrt{{x}^{2}+1}$,
∴10-y=$\sqrt{{x}^{2}+1}$-x,
∴10y-10-y=2x,
∴x=$\frac{1}{2}$(10y-10-y),
∴所求反函数为 f-1(x)=$\frac{1}{2}$(10x-10-x),
(3)∵f(x)的定义域为R,
∴f(x)的值域为R.
点评 本题考查求函数的定义域,求反函数,以及函数的值域,求出反函数,是解题的难点.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{2}$) | B. | (-∞,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,0) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b | B. | a=b | C. | a<b | D. | 不能确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com