精英家教网 > 高中数学 > 题目详情
下列4个正方体图形中,l是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出直线l⊥面MNP的所有图形的序号是(  )
A、①④B、①②C、②④D、①③
考点:直线与平面垂直的判定
专题:空间位置关系与距离
分析:设定正方体的顶点如图,连结DB,AC,根据M,P分别为中点,判断出MP∥AC,由四边形ABCD为正方形,判断出AC⊥BD进而根据DD′⊥平面ABCD,AC?平面ABCD,判断出DD′⊥AC,进而根据线面垂直的判定定理推断出AC⊥平面DBB′,根据线面垂直的性质可知AC⊥DB′,利用线面垂直的判定定理推断出由MP∥AC,推断出DB′⊥MP,同理可证DB′⊥MP,DB′⊥NP,利用线面垂直的判定定理推断出DB′⊥平面MNP.④中由①中证明可知l⊥MP,根据MP∥AC,AC⊥l,推断出l⊥MP,进而根据线面垂直的判定定理推断出l⊥平面MNP.
解答: 解:设定正方体的顶点如图,连结DB,AC,
∵M,P分别为中点,
∴MP∥AC,
∵四边形ABCD为正方形,
∴AC⊥BD,
∵BB′⊥平面ABCD,AC?平面ABCD,
∴BB′⊥AC,
∵BB′∩DB′=B,BB′?平面DBB′,AC?平面DBB′,
∴AC⊥平面DBB′,
∵DB′?平面DBB′,
∴AC⊥DB′,
∵MP∥AC,
∴DB′⊥MP,
同理可证DB′⊥MN,DB′⊥NP,
∵MP∩NP=P,MP?平面MNP,NP?平面MNP,
∴DB′⊥平面MNP,即l垂直于平面MNP,故①正确.
④中由①中证明可知l⊥MP,
∵MP∥AC,
AC⊥l,
∴l⊥MP,
∴l⊥平面MNP,
故选:A.
点评:本题主要考查了线面垂直的判定定理.考查了学生空间思维能力和观察能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α是第一象限角,则
α
3
的终边位置可能在
 

查看答案和解析>>

科目:高中数学 来源: 题型:

编号分别为A1,A2,A3,…,A12的12名篮球运动员在某次篮球比赛中的得分记录如下:
运动员编号A1A2A3A4A5A6A7A8A9A10A11A12
得分510121682127156221829
(1)完成如下的频率分布表:
得分区间频数频率
[0,10)3
1
4
[10,20)
[20,30)
合计121.00
(2)从得分在区间[10,20)内的运动员中随机抽取2人,求这2人得分之和大于25的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某批次的灯泡中随机地抽取200个样品,对其使用寿命进行实验检测,将结果列成频率分布表如下.根据寿命将灯泡分成一等品、合格品和次品三个等级,其中寿命大于或等于500天的灯泡是一等品,寿命小于300天的灯泡是次品,其余的灯泡是合格品.
寿命(天)频数频率
[100,200)20a
[200,300)300.15
[300,400)b0.35
[400,500)300.15
[500,600)500.25
合计2001
(Ⅰ)根据频率分布表中的数据,写出a,b的值;
(Ⅱ)从灯泡样品中随机地取n(n∈N*)个,如果这n个灯泡的等级分布情况恰好与从这200个样品中按三个等级分层抽样所得的结果相同,求n的最小值;
(Ⅲ)从这200个样品中按三个等级分层抽样抽取8个灯泡,再从这8个中抽取2个进行检测,求这2个灯泡中恰好一个是合格品一个是次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,则有(  )
A、
b2
a
>2b-a
B、
b2
a
<2b-a
C、
b2
a
≥2b-a
D、
b2
a
≤2b-a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,AB=4,BC=CD=EA=ED=2,F是线段EB的中点.
(Ⅰ)证明:BD⊥AE;
(Ⅱ)求平面ADE和平面CDE所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b为不相等的实数,求证:(a4+b4)(a2+b2)>(a3+b32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=Asin(2x+
π
6
)( A>0)的部分图象如图所示.
(Ⅰ)写出f(x)的最小正周期及 A,x0的值;
(Ⅱ)求f(x)在(-
π
4
π
3
)上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+k
ex
(其中k∈R,e=2.71828…是自然数的底数),f′(x)为f(x)的导函数.
(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈(0,1]时,f′(x)=0都有解,求k的取值范围;
(3)若f′(1)=0,试证明:对任意x>0,f′(x)<
e-2+1
x2+x
恒成立.

查看答案和解析>>

同步练习册答案