精英家教网 > 高中数学 > 题目详情

【题目】过正方体ABCD﹣A1B1C1D1的顶点A1在空间作直线l,使l与直线AC和BC1所成的角都等于 ,则这样的直线l共可以作出(
A.1条
B.2条
C.3条
D.4条

【答案】C
【解析】解:因为AD1∥BC1,所以直线AC和BC1所成的角即为直线AC和AD1所成的角,所以过A1在空间作直线l,使l与直线AC和BC1所成的角都等于 ,即过点A在空间作直线l,使l与直线AC和AD1所成的角都等于

因为∠ACD1=60°,∠ACD1的外角平分线与AC和AD1所成的角相等,均为60°,所以在平面ACD1内有一条满足要求.

因为∠ACD1的角平分线与AC和AD1所成的角相等,均为30°,将角平分线绕点A向上转动到与面ACD1垂直的过程中,存在两条直线与直线AC和BC1所成的角都等于 ,故符合条件的直线有3条.

故选C

【考点精析】关于本题考查的空间中直线与直线之间的位置关系,需要了解相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥E﹣ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF的中点. (I)求证:BE∥平面ACF;
(II)求平面BCF与平面BEF所成锐二面角的余弦角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
已知直线l过定点P(1,1),且倾斜角为 ,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有 (其中SPAB、SPCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有 =(其中VPABE、VPCDF分别为四面体P﹣ABE、P﹣CDF的体积).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知x,y∈R.
(1)若x,y满足 ,求证:
(2)求证:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:

组别

候车时间(单位:min)

人数

[0,5)

1

[5,10)

5

[10,15)

3

[15,20)

1


(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)现从这10人中随机取3人,求至少有一人来自第二组的概率;
(3)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】渝州集团对所有员工进行了职业技能测试从甲、乙两部门中各任选10名员工的测试成绩(单位:分)数据的茎叶图如图所示.
(1)若公司决定测试成绩高于85分的员工获得“职业技能好能手”称号,求从这20名员工中任选三人,其中恰有两人获得“职业技能好能手”的概率;
(2)公司结合这次测试成绩对员工的绩效奖金进行调整(绩效奖金方案如表),若以甲部门这10人的样本数据来估计该部门总体数据,且以频率估计概率,从甲部门所有员工中任选3名员工,记绩效奖金不小于3a的人数为ξ,求ξ的分布列及数学期望.

分数

[60,70)

[70,80)

[80,90)

[90,100]

奖金

a

2a

3a

4a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+ )(x∈R,ω>0)的最小正周期为π,将y=f(x)的图象向左平移|φ|个单位长度,所得函数y=f(x)为偶函数时,则φ的一个值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是 , 设摸取的这三个球中所含的黑球数为X,则P(X=k)取最大值时,k的值为

查看答案和解析>>

同步练习册答案