精英家教网 > 高中数学 > 题目详情
12.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:${y_1}=3\sqrt{2}sin({100πt}),{y_2}=3cos({100πt+\frac{π}{4}})$,则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.$6\sqrt{2}$B.6C.$3\sqrt{2}$D.3

分析 根据三角函数的辅助角公式,结合两角和差的正弦公式将函数进行化简即可得到结论.

解答 解:∵${y_1}=3\sqrt{2}sin({100πt}),{y_2}=3cos({100πt+\frac{π}{4}})$,
∴y=y1+y2=3$\sqrt{2}$sin(100πt)+3cos(100πt+$\frac{π}{4}$)
=3$\sqrt{2}$sin(100πt)+3cos100πtcos$\frac{π}{4}$-3sin(100πt)sin$\frac{π}{4}$
=3$\sqrt{2}$sin(100πt)+$\frac{3\sqrt{2}}{2}$cos100πt-$\frac{3\sqrt{2}}{2}$sin(100πt)
=$\frac{3\sqrt{2}}{2}$sin(100πt)+$\frac{3\sqrt{2}}{2}$cos100πt
=3sin(100πt+$\frac{π}{4}$),
则函数的振幅为3,
故选:D.

点评 本题主要考查三角函数的化简,利用辅助角公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}$sinxcosx-3sin2x-cos2x+3.
(1)当x∈(0,$\frac{π}{2}$)时,求f(x)的值域;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足$\frac{b}{a}$=$\sqrt{3}$,$\frac{sin(2A+C)}{sinA}$=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)求k的取值范围;
(3)在y轴上,是否存在定点E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=x+\frac{1}{x}$,
(1)证明f(x)在[1,+∞)上是增函数;
(2)求f(x)在[2,7]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+b,g(x)=x2+bx+c,其中b、c∈R,设$h(x)=\frac{g(x)}{f(x)}$.
(1)如果h(x)为奇函数,求实数b、c满足的条件;
(2)在(1)的条件下,若函数h(x)在区间[2,+∞)上为增函数,求c的取值范围;
(3)若对任意的x∈R恒有f(x)≤g(x)成立.证明:当x≥0时,g(x)≤(x+c)2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在正方体AC1中,求直线A1C1与直线B1C所成的角度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在单位正方体ABCD-A1B1C1D1中,M、N、P分别是CC1、BC,CD的中点,O为底面ABCD的中心.
(1)求证:A1P⊥MN;
(2)求证:OM⊥平面A1BD;
(3)求证:平面MNP∥平面B1D1A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)lg1000+log9$\frac{1}{81}$;
(2)log0.41+$\frac{1}{2}$log0.40.16;
(3)log3.333-log3.310;
(4)log5(25×53);
(5)lne-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在闭区间[0,2π]上,满足等式sinx-$\sqrt{3}$cosx=0,则x=$\frac{π}{3}$或$\frac{4π}{3}$.

查看答案和解析>>

同步练习册答案