精英家教网 > 高中数学 > 题目详情
(本小题满分13分)若椭圆的离心率等于,抛物线 的焦点在椭圆的顶点上。(Ⅰ)求抛物线的方程;
(Ⅱ)求的直线与抛物线两点,又过作抛物线的切线,当时,求直线的方程;
(Ⅰ)   (Ⅱ)   
(I)已知椭圆的长半轴为2,半焦距
由离心率等于……2分  ………3分
椭圆的上顶点(0,1)  抛物线的焦点为(0,1)抛物线的方程为
(II)由已知,直线的斜率必存在,设直线的方程为切线的斜率分别为 …………8分
时,,即   ………………………………9分
得:
解得
,即:  ……12分
此时满足①  直线的方程为…………13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知动圆过定点,且和定直线相切.(Ⅰ)求动圆圆心的轨迹的方程;(Ⅱ)已知点,过点作直线与曲线交于两点,若为实数),证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于AB两点,与抛物线交于CD两点.当直线x轴垂直时,
(Ⅰ)求椭圆的方程;
(II)求过点O、,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,过Aa,0),
B(0,-b),两点的直线到原点的距离是
⑴求椭圆的方程 ; 
⑵已知直线ykx+1(k0)交椭圆于不同的两点EF,且EF都在以B为圆心的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线和椭圆有相同的焦点,两曲线在第一象限内的交点为,椭圆轴负半轴交于点,且三点共线,分有向线段的比为,又直线与双曲线的另一交点为,若
(1)求椭圆的离心率;
(2)求双曲线和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,线段AB与CD互相垂直平分于点O,|AB|=2a(a>0),|CD|="2b" (b>0),动点P满足|PA|·|PB|=|PC|·|PD|.求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是(  )
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,过其左焦点且斜率为的直线与椭圆及其准线的交点从左到右的顺序为(如图),设
(1)求的解析式;
(2)求的最值.

查看答案和解析>>

同步练习册答案