如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)
(1)求证:AE//平面DCF;
(2)当AB的长为,时,求二面角A—EF—C的大小.
科目:高中数学 来源: 题型:解答题
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求:
(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如图所示.
(Ⅰ)求证:;
(Ⅱ)求异面直线与所成角的余弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图,在三棱锥S﹣ABC中,底面是边长为1的等边三角形,侧棱长均为2,SO⊥底面ABC,O为垂足,则侧棱SA与底面ABC所成角的余弦值为( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
右图为一简单组合体,其底面ABCD为正方形,平面, ,且="2" .
(1)答题卡指定的方框内画出该几何体的三视图;
(2)求四棱锥B-CEPD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图,在三棱锥P—ABC中,PA⊥底面ABC,∠BAC=60°,AB=AC=2,以PA为直径的球O和PB、PC分别交于B1、C1
(1)求证B1C1∥平面ABC
(2)若二面角C—PB—A的大小为arctan2,试求球O的表面积。
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com