精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义在实数集上的奇函数,当时, ,若集合则实数的取值范围是______.

【答案】

【解析】

x≥0时的f(x)改写成分段函数,求出其最小值,由函数的奇偶性可得x<0时的函数的最大值,条件等价为对x∈R,都有f(x-1)f(x),进行转化求解即可求解该不等式得答案.

=
则等价为f(x-1)-f(x) 0恒成立,即f(x-1)f(x)恒成立,
当x≥0时
若a≤0,

则当x≥0时,
∵f(x)是奇函数,
∴若x<0,则-x>0,则f(-x)=-x=-f(x),
则f(x)=x,x<0,
综上f(x)=x,此时函数为增函数,则f(x-1)f(x)恒成立;
若a>0,
若0≤x≤a时,
当a<x≤2a时,
当x>2a时, .即当x≥0时,函数的最小值为-a,
由于函数f(x)是定义在R上的奇函数,
当x<0时,f(x)的最大值为a,
作出函数的图象如图:
由于x∈R,f(x-1)f(x),
故函数f(x-1)的图象不能在函数f(x)的图象的上方,
结合图可得 ,即6a2,求得0<a
综上a
故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在约束条件 下,当t≥0时,其所表示的平面区域的面积为S(t),S(t)与t之间的函数关系用下列图象表示,正确的应该是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C (ab>0)的一条准线方程为x离心率为

(1)求椭圆C的方程;

(2)如图,设A为椭圆的上顶点,过点A作两条直线AMAN分别与椭圆C相交于MN两点,且直线MN垂直于x

设直线AMAN的斜率分别是k1 k2,求k1k2的值

M作直线l1AM,过N作直线l2ANl1l2相交于点Q.试问:点Q是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列四个正方体中,为正方体的两个顶点,为所在棱的中点,则在这四个正方体中,直接与平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业一天中不同时刻的用电量(万千瓦时)关于时间(小时,)的函数近似满足,如图是函数的部分图象(对应凌晨点).

(Ⅰ)根据图象,求的值;

(Ⅱ)由于当地冬季雾霾严重,从环保的角度,既要控制火力发电厂的排放量,电力供应有限;又要控制企业的排放量,于是需要对各企业实行分时拉闸限电措施.已知该企业某日前半日能分配到的供电量 (万千瓦时)与时间(小时)的关系可用线性函数模型模拟.当供电量小于该企业的用电量时,企业就必须停产.初步预计停产时间在中午11点到12点间,为保证该企业既可提前准备应对停产,又可尽量减少停产时间,请从这个初步预计的时间段开始,用二分法帮其估算出精确到15分钟的停产时间段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且anan+1=2n , n∈N* , 则数列{an}的通项公式为(
A.an=( n1
B.an=( n
C.an=
D.an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足.

(1)求的通项公式;

(2)设等比数列满足,问: 与数列的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论的单调性;

(2)若在点处的切线方程为,若对任意的

恒有,求的取值范围(是自然对数的底数)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

同步练习册答案