精英家教网 > 高中数学 > 题目详情

【题目】已知正△ABC内接于半径为2的圆O,点P是圆O上的一个动点,则 的取值范围是(
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]

【答案】B
【解析】解:以△ABC外接圆圆心为原点建立平面直角坐标系,如图所示; 设A(2,0),B(﹣1, ),P(2cosθ,2sinθ);
=(2cosθ﹣2,2sinθ),
=(2cosθ+1,2sinθ﹣ );
=(2cosθ﹣2)(2cosθ+1)+2sinθ(2sinθ﹣
=2﹣2cosθ﹣2 sinθ
=2﹣4sin(θ+ );
∵﹣1≤sin(θ+ )≤1,
∴﹣2≤ ≤6,
即则 的取值范围是[﹣2,6].
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有( )

A. 24B. 28C. 32D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数,且

(I)若方程有唯一实数根,求函数的解析式.

(II)当时,求函数在区间上的最大值与最小值.

(III)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小华与另外名同学进行“手心手背”游戏,规则是:人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得分,其余每人得分.现人共进行了次游戏,记小华次游戏得分之和为,则为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有xf′(x)>x2+3f(x),则不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集为(
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的函数,对R都有,且当0时,<0,=1.

(1)求的值

(2)求证:为奇函数;

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,分别为棱的中点.

(1)求证:平面;

(2)若平面平面,且,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.

(1)求证:BC1⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为了解端午节期间粽子的销售量,对其所在销售范围内的1000名消费者在端午节期间的粽子购买量(单位:g)进行了问卷调查,得到如图所示的频率分布直方图.

(Ⅰ)求频率分布直方图中a的值;

(Ⅱ)求这1000名消费者的棕子购买量在600g1400g的人数;

(Ⅲ)求这1000名消费者的人均粽子购买量(频率分布直方图中同一组的数据用该组区间的中点值作代表).

查看答案和解析>>

同步练习册答案