精英家教网 > 高中数学 > 题目详情

【题目】设函数 的定义域为 ,如果 ,使 为常数)成立,则称函数 上的均值为 .给出下列四个函数:① ;② ;③ ;④ .则其中满足在其定义域上均值为2的函数是

【答案】③
【解析】原问题等价于对于任意的x1D,存在唯一的x2D,使f(x1)+f(x2)=4成立的函数。
y=x2,由f(x1)+f(x2)=4得 ,此时 ,当 时,不存在满足题意的 ,故不满足条件;
y=2x定义域为R,值域为y>0.对于x1=3,f(x1)=8.要使f(x1)+f(x2)=4成立,则f(x2)=4,不成立;
y=lnx,定义域为x>0,值域为R且单调,由f(x1)+f(x2)=4得 ,此时 ,不存在满足题意的 ,故满足条件;
,由f(x1)+f(x2)=4得 ,此时 ,当 时,不存在满足题意的 ,故不满足条件;综上可得:满足在其定义域上均值为2的函数是③.
根据二次函数、指数函数、对数函数以及正弦型函数的图像和性质逐一判断即可得出结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点 ,焦点在 轴上,离心率为 的椭圆过点
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与 轴的非负半轴交于点 ,过点 作互相垂直的两条直线,分别交椭圆于点 两点,连接 ,求 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 中, 分别是 的中点.

(Ⅰ)求证: 平面
(Ⅱ)若 上一点 满足 ,求 所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图(N∈N*),那么输出的p是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数 的奇偶性.
(2)求 的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若关于 的不等式 恒成立,求实数 的取值范围;
(Ⅱ)若关于 的一次二次方程 有实根,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中 ,存在 使得 成立,则实数 的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)研究函数的极值点;

(2)当时,若对任意的,恒有,求的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

同步练习册答案