【题目】在平面直角坐标系中,椭圆: 的离心率是,且直线: 被椭圆截得的弦长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与圆: 相切:
(i)求圆的标准方程;
(ii)若直线过定点,与椭圆交于不同的两点、,与圆交于不同的两点、,求的取值范围.
【答案】(I);(II)(i);(ii).
【解析】试题分析:(Ⅰ)由直线过定点, ,可得到,再结合,即可求出椭圆的方程;(Ⅱ)(i)利用圆的几何性质,求出圆心到直线的距离等于半径,即可求出的值,即可求出圆的标准方程;(ii)首先设直线的方程为,利用韦达定理即可求出弦长的表达式,同理利用圆的几何关系可求出弦长的表达式,即可得到的表达式,再用换元法,即可求出的取值范围.
试题解析:
解:(Ⅰ)由已知得直线过定点, , ,
又, ,解得, ,
故所求椭圆的标准方程为.
(Ⅱ)(i)由(Ⅰ)得直线的方程为,即,
又圆的标准方程为,
∴圆心为,圆的半径,
∴圆的标准方程为.
(ii)由题可得直线的斜率存在,
设: ,与椭圆的两个交点为、,
由消去得,
由,得,
, ,
∴.
又圆的圆心到直线: 的距离,
∴圆截直线所得弦长,
∴,
设, ,
则,
∵的对称轴为,在上单调递增, ,
∴,
∴.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求边c的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品展开促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示转盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.
乙商场:从装有4个白球,4个红球和4个篮球的盒子中一次性摸出3球(这些球初颜色外完全相同),如果摸到的是3个不同颜色的球,即为中奖.
(Ⅰ)试问:购买该商品的顾客在哪家商场中奖的可能性大?说明理由;
(Ⅱ)记在乙商场购买该商品的顾客摸到篮球的个数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数.
(1)若在上单调递增,求的取值范围;
(2)令,将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象.区间满足:在上至少含有30个零点.在所有满足上述条件的中,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com