分析 通过分解因式,利用正项数列{an},直接求数列{an}的通项公式an;利用数列的通项公式化简bn,利用裂项法直接求数列{bn}的前n项和Tn,即可得出结论.
解答 解:由正项数列{an}满足an2+(1-n)an-n=0,
可得(an-n)(an+1)=0,
所以an=n.
所以bn=$\frac{1}{(n+1){a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
Tn=1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$,
所以T2016=1-$\frac{1}{2017}$=$\frac{2016}{2017}$,
故答案为:$\frac{2016}{2017}$.
点评 本题考查数列的通项公式的求法,裂项法求解数列的和的基本方法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (3,5) | B. | (5,7) | C. | [5,8] | D. | [5,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com